精英家教网 > 高中数学 > 题目详情
(2013•甘肃三模)选修4-1:几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2=EF•EC.
(1)求证:CE•EB=EF•EP;
(2)若CE:BE=3:2,DE=3,EF=2,求PA的长.
分析:(I)由已知可得△DEF∽△CED,得到∠EDF=∠C.由平行线的性质可得∠P=∠C,于是得到∠EDF=∠P,再利用对顶角的性质即可证明△EDF∽△EPA.于是得到EA•ED=EF•EP.利用相交弦定理可得EA•ED=CE•EB,进而证明结论;
(II)利用(I)的结论可得BP=
15
4
,再利用切割线定理可得PA2=PB•PC,即可得出PA.
解答:(I)证明:∵DE2=EF•EC,∠DEF公用,
∴△DEF∽△CED,
∴∠EDF=∠C.
又∵弦CD∥AP,∴∠P=∠C,
∴∠EDF=∠P,∠DEF=∠PEA
∴△EDF∽△EPA.
EA
EF
=
EP
ED
,∴EA•ED=EF•EP.
又∵EA•ED=CE•EB,
∴CE•EB=EF•EP;
(II)∵DE2=EF•EC,DE=3,EF=2.
∴32=2EC,∴CE=
9
2

∵CE:BE=3:2,∴BE=3.
由(I)可知:CE•EB=EF•EP,∴
9
2
×3=2EP
,解得EP=
27
4

∴BP=EP-EB=
27
4
-3=
15
4

∵PA是⊙O的切线,∴PA2=PB•PC,
PA2=
15
4
×(
27
4
+
9
2
)
,解得PA=
15
3
4
点评:熟练掌握相似三角形的判定和性质定理、平行线的性质、对顶角的性质、相交弦定理、切割线定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•甘肃三模)已知函数y=
x3
3
+
mx2+(m+n)x+1
2
的两个极值点分别为x1,x2,且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=loga(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=
2
,D为AA1的中点,BD与AB1交于点O,CO丄侧面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求三棱锥B1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)执行如图所示的程序框图,输出的S值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)观察下列算式:
l3=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,

若某数n3按上述规律展开后,发现等式右边含有“2013”这个数,则n=
45
45

查看答案和解析>>

同步练习册答案