【题目】如图,已知△的内角、、的对边分别为、、,其中,且,延长线段到点,使得,.
(1)求证:是直角;
(2)求的值.
【答案】(1)证明见解析;(2).
【解析】
(1)根据正弦定理以及二倍角公式即可证明,
(2)如图所示:过点C作CE⊥AC,根据平行线分线段成比例定理,设CE=x,则AB=5x,ADx,再根据勾股定理可得x的值,再由正弦定理,sinD,再根据同角的三角函数的关系即可求出答案.
1)由正弦定理可得sinBcosB=sinCcosC,
即sin2B=sin2C,
∵b≠c,
∴2B+2C=180°,
∴B+C=90°,
∴∠BAC=180°﹣90°=90°,
(2)如图所示:过点C作CE⊥AC,
∵BC=4,BC=4CD,
∴CD=1,BD=5,
∵∠BAC=90°,
∴CE∥AB,
∴,
设CE=x,则AB=5x,
∵∠CAD=30°,
∴AE=2x,ACx,
∴,
∴DEx,
∵AB2+AC2=BC2,
∴25x2+3x2=16,
解得x,
在△CED中,∠CED=120°,CE,CD=1,
由正弦定理可得,
即sinD,
cosD,
∴tanD.
科目:高中数学 来源: 题型:
【题目】已知集合A={1,2,3,4}和集合B={1,2,3,…,n},其中n≥5,.从集合A中任取三个不同的元素,其中最小的元素用S表示;从集合B中任取三个不同的元素,其中最大的元素用T表示.记X=T-S.
(1)当n=5时,求随机变量X的概率分布和数学期望;
(2)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln+ax﹣1(a≠0).
(I)求函数f(x)的单调区间;
(Ⅱ)已知g(x)+xf(x)=﹣x,若函数g(x)有两个极值点x1,x2(x1<x2),求证:g(x1)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若是递增数列,数列满足:对任意,存在,使得,则称是的“分隔数列”.
(1)设,证明:数列是的分隔数列;
(2)设是的前n项和,,判断数列是否是数列的分隔数列,并说明理由;
(3)设是的前n项和,若数列是的分隔数列,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右点分别为点在椭圆上,且
(1)求椭圆的方程;
(2)过点(1,0)作斜率为的直线交椭圆于M、N两点,若求直线的方程;
(3)点P、Q为椭圆上的两个动点,为坐标原点,若直线的斜率之积为求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆:,左顶点为,经过点,过点作斜率为的直线交椭圆于点,交轴于点.
(1)求椭圆的方程;
(2)已知为的中点,,证明:对于任意的都有恒成立;
(3)若过点作直线的平行线交椭圆于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】统计学中将个数的和记作
(1)设,求;
(2)是否存在互不相等的非负整数,,使得成立,若存在,请写出推理的过程;若不存在请证明;
(3)设是不同的正实数,,对任意的,都有,判断是否为一个等比数列,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,如果存在两条平行直线与,使得对于任意,都有恒成立,那么称函数是带状函数,若,之间的最小距离存在,则称为带宽.
(1)判断函数是不是带状函数?如果是,指出带宽(不用证明);如果不是,说明理由;
(2)求证:函数()是带状函数;
(3)求证:函数()为带状函数的充要条件是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com