精英家教网 > 高中数学 > 题目详情
8.为了促销某电子产品,商场进行降价,设m>0,n>0,m≠n,有三种降价方案:
方案①:先降m%,再降n%;
方案②:先降$\frac{m+n}{2}%$,再降$\frac{m+n}{2}%$;
方案③:一次性降价(m+n)%.
则降价幅度最小的方案是②.(填出正确的序号)

分析 设m>0,n>0,m≠n,设原来价格为1,有三种降价方案:方案①:先降m%,再降n%,价格变为:(1-m%)(1-n%);方案②:先降$\frac{m+n}{2}%$,再降$\frac{m+n}{2}%$,共降了:(1-$\frac{m+n}{2}%$)(1-$\frac{m+n}{2}%$).方案③:一次性降价1-(m+n)%.通过作差比较即可得出大小关系.

解答 解:设m>0,n>0,m≠n,设原来价格为1,有三种降价方案:
方案①:先降m%,再降n%,价格变为:(1-m%)(1-n%);
方案②:先降$\frac{m+n}{2}%$,再降$\frac{m+n}{2}%$,共降了:(1-$\frac{m+n}{2}%$)(1-$\frac{m+n}{2}%$).
方案③:一次性降价1-(m+n)%.
∵(1-$\frac{m+n}{2}%$)(1-$\frac{m+n}{2}%$)-(1-m%)(1-n%)=$(\frac{m+n}{2}%)^{2}$-(mn)%=$\frac{[(m-n)%]^{2}}{4}$>0,
(1-$\frac{m+n}{2}%$)(1-$\frac{m+n}{2}%$)-[1-(m+n)%]=$(\frac{m+n}{2}%)^{2}$>0.
∴降价幅度最小的方案是②.
故答案为:②.

点评 本题考查了数列的应用、作差法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设随机变量X服从正态分布N(4,σ2),若P(X>m)=0.3,则P(X>8-m)=(  )
A.0.2B.0.3C.0.7D.与σ的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.7人站成两排队列,前排3人,后排4人.现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为360.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax-lnax+x2(a>0,a≠1)
(Ⅰ)求函数f(x)在点(0,f(0))处的切线方程
(Ⅱ)求函数f(x)单调递增区间
(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.分析法证明命题中所说的“执果索因”是指寻求使命题成立的(  )
A.必要条件B.充分条件C.充要条件D.必要或充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,AD∥BC,PA⊥AB,CD⊥AD,BC=CD=$\frac{1}{2}$AD,E为AD的中点.
(Ⅰ)求证:PA⊥CD;
(Ⅱ)求证:平面PBD⊥平面PAB;
(Ⅲ)在平面PAB内是否存在M,使得直线CM∥平面PBE,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点M的坐标(x,y)满足不等式组$\left\{\begin{array}{l}{2x+y-4≥0,}&{\;}\\{x-y-2≤0,}&{\;}\\{y-3≤0,}&{\;}\end{array}\right.$N为直线y=-2x+2上任一点,则|MN|的最小值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.复数(1+2i)i的虚部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在正方体ABCD-A1B1C1D1中,AB=3$\sqrt{3}$,点E,F在线段DB1上,且DE=EF=FB1,点M是正方体表面上的一动点,点P,Q是空间两动点,若$\frac{|PE|}{|PF|}$=$\frac{|QE|}{|QF|}$=2且|PQ|=4,则$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值为-$\frac{8}{3}$.

查看答案和解析>>

同步练习册答案