A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 直接利用复数代数形式的乘除运算化简复数$\frac{i}{{\sqrt{3}-3i}}$,求出在复平面内,复数$\frac{i}{{\sqrt{3}-3i}}$对应的点的坐标,则答案可求.
解答 解:$\frac{i}{{\sqrt{3}-3i}}$=$\frac{i(\sqrt{3}+3i)}{(\sqrt{3}-3i)(\sqrt{3}+3i)}=\frac{-3+\sqrt{3}i}{12}$=$-\frac{1}{4}+\frac{\sqrt{3}}{12}i$,
在复平面内,复数$\frac{i}{{\sqrt{3}-3i}}$对应的点的坐标为:($-\frac{1}{4}$,$\frac{\sqrt{3}}{12}$),位于第二象限.
故选:B.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\sqrt{3}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,0) | B. | (-∞,-2)∪(-1,0) | C. | (-∞,-2)∪(0,+∞) | D. | (-2,-1)∪(0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,$\frac{3}{2}$) | B. | (1,$\sqrt{2}$) | C. | ($\sqrt{2}$,$\sqrt{3}$) | D. | ($\sqrt{2}$,$\frac{3}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com