精英家教网 > 高中数学 > 题目详情
有五名男生四名女生全体一排一行,男生甲站在左端,有多少种排法?
考点:计数原理的应用
专题:应用题,排列组合
分析:这是一个排列问题,男生甲站在左端,剩下的8个元素全排列有A88种.
解答: 解:五名男生四名女生全体一排一行,男生甲站在左端,剩下的8个元素全排列有A88种,
点评:排列问题常见的解题思路:元素分析法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、直接法、间接法(排除法)、捆绑法、等机会法、插空法等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为
7
7
|OB|.
(1)求椭圆C的方程;
(2)若椭圆C1方程为:
x2
m2
+
y2
n2
=1(m>n>0),椭圆C2方程为:
x2
m2
+
y2
n2
=λ(λ>0,且λ≠1),则称椭圆C2是椭圆C1的λ倍相似椭圆.已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M、N,试求弦长|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=-1,a2>a1,|an+1-an|=2n(n∈N*),若数列{a2n-1}单调递减,数列{a2n}单调递增,则数列{an}的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1的两个焦点为F1(-5,0),F2(5,0),其上一点M满足MF1-MF2=-8,则该双曲线的一条渐近线方程为(  )
A、4x+3y=0
B、4x-5y=0
C、3x-4y=0
D、5x+3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
2
+bcosx+csinx的图象过两点(0,1),(
π
2
,1).
(1)求b,c的值,并化简f(x);
(2)求函数f(x)的图象的两条对轴之间的最短距离;
(3)当x∈[0,
π
2
]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀成绩后,得到如下不完整的列联表:
优秀非优秀合计
甲班10
乙班30
合计105
已知在全部105人中随机抽取1人其成绩为优秀的概率是
2
7

(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为成绩与班级有关系?;
(3)若按下面的方法从甲班优秀的学生中抽取1人;把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,且规定点数之和为12时抽取人序号为2.试求抽到6或10号的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=Acos(3x+φ)(|φ|>0),若f(
π
2
)=-
2
3
,且当x=
4
时,f(x)取最大值,则f(x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知c=2(b-acosC)
(1)求∠A的大小
(2)若△ABC的面积为
3
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学从4名男生和3名女生中推荐4人参加志愿者活动,若这4人中必须既有男生又有女生,则不同的推选法共有(  )
A、140种B、34种
C、35种D、120种

查看答案和解析>>

同步练习册答案