精英家教网 > 高中数学 > 题目详情
如图,四棱锥E-ABCD中,底面ABCD为正方形,EC⊥平面ABCD,AB=
2
,CE=1,G为AC与BD交点,F为EG中点,
(Ⅰ)求证:CF⊥平面BDE;
(Ⅱ)求二面角A-BE-D的大小.
(Ⅰ)证明:∵ABCD为正方形,AB=
2

∴AC=2,AC⊥BD,则CG=1=EC,
∵又F为EG中点,∴CF⊥EG.
∵EG⊥面ABCD,AC∩BD=G,BD⊥平面ECF,
∴CF⊥BDBD∩EG=G,∴CF⊥平面BDE (6分)
(Ⅱ)建立如图所示的空间直角坐标系C(0,0,0),F(
2
4
2
4
1
2
)
B(0,
2
,0)
[,A(
2
2
,0)
,E(0,0,1)
由(Ⅰ)知,
CF
=(
2
4
2
4
1
2
)
为平面BDE的一个法向量 (9分)
设平面ABE的法向量n=(x,y,z),
n•
BA
=0,n•
BE
=0
(
2
,0,0)(x,y,z)=0
(0,-
2
,1)(x,y,z)=0

x=0且z=
2
y
n=(0,1,
2
)
(11分)
从而cos<n,
CF
>=
n•
CF
|n|•|
CF
|
=
3
2
∴二面角A-BE-D的大小为
π
6
.(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )
A.2B.
1
2
C.
2
D.
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.则A1B与平面ABD所成角的余弦值(  )
A.
1
2
B.
3
2
C.
7
3
D.
6
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等腰梯形ABCD的上底AB=3,下底CD=1,高DO=1.以高线DO为折痕,将平面ADO折起,使得平面ADO⊥平面BCDO,点H为棱AC的中点.
(1)求直线OC与直线AB所成的余弦值;
(2)求平面ADO与平面ACB所成的锐二面角的余弦值;
(3)在平面ADO内找一点G,使得GH⊥平面ACB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AD=1,AB=2,E、F分别是AB、PD的中点.
(1)求证:AF平面PEC;
(2)求二面角P-EC-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,∠BAC=90°,AB=AC=AA1=1,D是棱CC1的中点,P是AD的延长线与A1C1的延长线的交点.
(Ⅰ)求证:PB1平面A1BD;
(Ⅱ)求二面角A-A1D-B的大小;
(Ⅲ)在直线B1P上是否存在一点Q,使得DQ⊥平面A1BD,若存在,求出Q点坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2013·微山一中]在△ABC所在的平面内有一点P,如果2, 那么△PBC的面积与△ABC的面积之比是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为(  )
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

++=     .

查看答案和解析>>

同步练习册答案