【题目】已知函数,若函数f(x)在处取得极大值,则实数a的取值范围是______.
【答案】.
【解析】
求出函数的导数,讨论a的取值范围,得到函数的单调区间,结合函数的最大值,可得a的取值范围.
解:由,可得,
设,,
当,,,函数单调递增,
当,,,函数单调递增;
,,函数单调递减;
由f(x)在处取得极大值,可得,
当时,单调递增,当,,单调递减;
当,,单调递增,所以f(x)在处取得极小值,与题意不符;
当时,即,可得:在单调递增,所以当,
,当,,即f(x)在单调递减,在单调递增,所以f(x)在处取得极小值,与题意不符;
当时,即,在单调递增,在单调递减,
所以当,,单调递减,与题意不符;
当,即可,当,,函数单调递增;
当,,函数单调递减,所以f(x)在处取得极大值,符合题意,
故答案为:.
科目:高中数学 来源: 题型:
【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设
(1)求灯柱AB的高h(用表示);
(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点与凳面圆形的圆心的连线垂直于凳面和地面,且分细钢管上下两段的比值为,三只凳脚与地面所成的角均为.若、、是凳面圆周的三等分点,厘米,求凳子的高度及三根细钢管的总长度(精确到).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线是双曲线的一条渐近线,点在双曲线C上,设坐标原点为O.
(1)求双曲线C的方程;
(2)若过点的直线l与双曲线C交于R、S两点,若,求直线l的方程;
(3)设在双曲线上,且直线AM与y轴相交于点P,点M关于y轴对称的点为N,直线AN与y轴相交于点Q,问:在x轴上是否存在定点T,使得?若存在,求出点T的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:;为数表中第行的第个数.
…
…
…
……
(1)求第2行和第3行的通项公式和;
(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于的表达式;
(3)若,,试求一个等比数列,使得,且对于任意的,均存在实数,当时,都有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,记棱长为1的正方体,以各个面的中心为顶点的正八面体为,以各面的中心为顶点的正方体为,以各个面的中心为顶点的正八面体为,……,以此类推得一系列的多面体,设的棱长为,则数列的各项和为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com