精英家教网 > 高中数学 > 题目详情

【题目】已知矩形中,EF分别为的中点.沿将矩形折起,使,如图所示.PQ分别为线段的中点,连接.

1)求证:平面

2)求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

(1) 中点R,连接,可知,,Q中点,可得则有,即四边形是平行四边形,则有,即证得平面.

(2) 建立空间直角坐标系,求得半平面的法向量: ,然后利用空间向量的相关结论可求得二面角的余弦值.

1)取中点R,连接

则在中,,且

Q中点,所以

而且,所以

所以四边形是平行四边形,

所以

平面平面

所以平面.

2)在平面内作于点G,以E为原点,分别为xyx轴,

建立如图所示的空间直角坐标系,

则各点坐标为

所以

设平面的一个法向量为

,得

又平面的一个法向量为

所以.

因此,二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省确定从2021年开始,高考采用的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目;“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取名学生进行调查.

1)已知抽取的名学生中含男生110人,求的值及抽取到的女生人数;

2)学校计划在高二上学期开设选修中的物理历史两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调杳(假定每名学生在这两个科目中必须洗择一个科目且只能选择一个科目).下表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

性别

选择物理

选择历史

总计

男生

50

女生

30

总计

3)在(2)的条件下,从抽取的选择物理的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对物理的选课意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,当时,则函数上的所有零点之和为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线

)求的值和直线的直角坐标方程及的参数方程;

)已知曲线的参数方程为,(为参数),直线交于两点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的参数方程;

2)若直线与曲线相交于两点,且的面积为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的所有棱长都为的中点,边上,.

1)证明:平面平面

2)若是侧面内的动点,且平面.

①在答题卡中作出点的轨迹,并说明轨迹的形状(不需要说明理由);

②求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,△PAB是边长为2的等边三角形,底面ABCD为直角梯形,ABCDABBCBCCD1PD.

1)证明:ABPD.

2)求二面角APBC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点,且.

1)求的取值范围;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面是棱的中点.

1)求证:平面

2)若,点是线段上一点,且,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案