精英家教网 > 高中数学 > 题目详情
已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对?x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解.
其中真命题的个数是
0
0
个.
分析:本题利用特殊法处理,根据已知条件,适当取特殊函数一一验证:对于①可取a=-1,b=0,c=-1,则f(x)=-x2-1,无零点;对于②可取a=1,b=0,c=0,即f(x)=x2,有且只有一个零点;对于③可取a=1,b=1,c=
3
16
,方程f(x)=0有两个不等实根-
1
4
,-
3
4
解答:解:已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
对于①,若取a=-1,b=0,c=-1,则f(x)=-x2-1,无零点,但g(x)=-(-x2-1)2-1<0对?x∈R成立,故①错;
②若f(x)=x2,有且只有一个零点,则g(x)=(x22=x4没有两个零点,故②错;
③若取a=1,b=1,c=
3
16
,方程f(x)=0有两个不等实根-
1
4
,-
3
4
,而方程g(x)=[f(x)]2+[f(x)]+
3
16
?f(x)=-
1
4
或f(x)=-
3
4
,无解,故③错.
∴其中真命题的个数是0.
故答案为 0
点评:本小题主要考查二次函数的性质、函数的零点等基础知识,考查函数方程不等式的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2:已知f(x)=ax2+bx+c的图象过点(-1,0),是否存在常数a、b、c,使不等式x≤f(x)≤
x2+12
对一切实数x都成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,则f(2)的取值范围是
[2,10]
[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在区间(
1
2
,1)
上不单调,则
3b-2
3a+2
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对?x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(
3
2
)从小到大的顺序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步练习册答案