精英家教网 > 高中数学 > 题目详情
函数y=f(x)的导数y=f′(x)的图象如图所示,下列说法正确的是(  )
分析:利用导数与函数单调性的关系以及函数在某点取得极值的条件即可判断.
解答:解:由函数y=f(x)导函数的图象可知:
当x<x2及x>x3时,f′(x)>0,f(x)单调递增;
当x2<x<x3时,f′(x)<0,f(x)单调递减.
所以f(x)的单调减区间为(x2,x3);单调增区间为(-∞,x2),(x3,+∞).
则f(x)在x=x3取得极小值,在x=x2处取得极大值.
故选 C.
点评:本题考查函数的单调性及极值问题,本题以图象形式给出导函数,由此研究函数有关性质,体现了数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知函数y=f(x)的导函数y=f′(x)的图象如下,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10、已知f′(x)是函数y=f(x)的导函数,且y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=g(x)是函数y=f(x)的导函数,则称函数y=f(x)是函数y=g(x)的原函数,例如y=x3是y=3x2的原函数,y=x3+1也是y=3x2的原函数,现请写出函数y=2x4的一个原函数
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•东营一模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f''(x)是函数y=f(x)的导数y=f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
已知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f'(x)是函数y=f(x)的导数,f''是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据这一发现,求:
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
对称中心为
(
1
2
,1)
(
1
2
,1)

(2)计算f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=
2010
2010

查看答案和解析>>

同步练习册答案