【题目】如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,,//,.
(1)证明://平面BCE.
(2)设平面ABF与平面CDF所成的二面角为θ,求.
【答案】(1)证明见解析(2)
【解析】
(1)根据线面垂直的性质定理,可得DE//BF,然后根据勾股定理计算可得BF=DE,最后利用线面平行的判定定理,可得结果.
(2)利用建系的方法,可得平面ABF的一个法向量为,平面CDF的法向量为,然后利用向量的夹角公式以及平方关系,可得结果.
(1)因为DE⊥平面ABCD,所以DEAD,
因为AD=4,AE=5,DE=3,同理BF=3,
又DE⊥平面ABCD,BF⊥平面ABCD,
所以DE//BF,又BF=DE,
所以平行四边形BEDF,故DF//BE,
因为BE平面BCE,DF平面BCE
所以DF//平面BCE;
(2)建立如图空间直角坐标系,
则D(0,0,0),A(4,0,0),
C(0,4,0),F(4,3,﹣3),
,
设平面CDF的法向量为,
由,令x=3,得,
易知平面ABF的一个法向量为,
所以,
故.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和的直角坐标方程;
(2)设是曲线上一点,此时参数,将射线绕原点逆时针旋转交曲线于点,记曲线的上顶点为点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,过点的动直线交抛物线于,两点
(1)当恰为的中点时,求直线的方程;
(2)抛物线上是否存在一个定点,使得以弦为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)写出曲线,的极坐标方程;
(2)在极坐标系中,已知与,的公共点分别为,,,当时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(且).
(1)若的定义域为,判断的单调性,并加以说明;
(2)当时,是否存在,,使得在区间上的值域为,若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的各项均为正数,前项和满足;数列是等比数列,前项和为.
(1)求数列的通项公式;
(2)已知等比数列满足,,,求数列前项和为;
(3)若,且等比数列的公比,若存在,使得,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com