精英家教网 > 高中数学 > 题目详情

和两异面直线ABCD都相交的直线ACBD的位置关系是________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

是两个不同的平面,是平面之外的两条不同直线,给出四个论断:
  ②  ③   ④。 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________________________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设m、n是平面α外的两条直线,给出三个论断:
①m∥n;②m∥α;③n∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,已知点是正方体的棱上的一个动点,设异面直线所成的角为,则的最小值是                   .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知矩形ABCD,AB=1,BC=,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,下列说法正确的是________.(填序号)
①存在某个位置,使得直线AC与直线BD垂直;
②存在某个位置,使得直线AB与直线CD垂直;
③存在某个位置,使得直线AD与直线BC垂直;
④对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知四棱锥PABCD的顶点P在底面的射影恰好是底面菱形ABCD的两条对角线的交点,若AB=3,PB=4,则PA长度的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:
(1)矩形的4个顶点;
(2)每个面都是等边三角形的四面体的4个顶点;
(3)每个面都是直角三角形的四面体的4个顶点;
(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.
其中正确的结论有________个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知平面α∥平面β,P是α,β外一点,过点P的直线m分别与α,β交于A,C,过点P的直线n分别与α,β交于B,D,且PA=6,AC=9,PD=8,则BD的长为    .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:
①若a∥α,a∥β,则α∥β;②若a⊥α,α⊥β,则α⊥β;
③若a∥α,b∥α,则a∥b; ④若a⊥α,b⊥α,则a∥b.
上述命题中,所有真命题的序号是________.

查看答案和解析>>

同步练习册答案