【题目】一种密码锁的密码设置是在正边形的每个顶点处赋值0和1两个数中的一个,同时,在每个顶点处染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?
【答案】当为奇数时,有种;当为偶数时,有种.
【解析】
对于该种密码锁的一种密码设置,若相邻两个顶点上所赋值的数字不同,则在它们所在的边上标上;若颜色不同,则标上;若数字和颜色都相同,则标上.于是,对于给定的点上的设置(共有4种),按照边上的字母可以依次确定点上的设置.为了使得最终回到时的设置与初始时相同,标有和的边都是偶数条.
所以,这种密码锁的所有不同的密码设置方法数等于在边上标记、、使得标有和的边都是偶数条的方法数的4倍.
设标有的边有()条,标有的边有()条.
选取条边标记的有种方法,在余下的边中取出条边标记的有第种方法,其余的边标记.
由乘法原理知共有种标记方法.
对、求和,密码锁的所有不同的密码设置方法数为
. ①
这里,约定.
当为奇数时,,此时,
. ②
代入式①中得
.
当为偶数时,若,则式②仍然成立;若,则正边形的所有边都标记,此时,只有一种标记方法.于是,所有不同的密码设置的方法数为
.
综上,这种密码锁的所有不同的密码设置方法数是:当为奇数时,有种;当为偶数时,有种.
科目:高中数学 来源: 题型:
【题目】下表是一个“数阵”:
1 | ( ) | ( ) | ( ) | … | … | |
( ) | 1 | ( ) | ( ) | … | … | |
( ) | ( ) | ( ) | 1 | … | … | |
… | … | … | … | … | … | … |
… | … | |||||
… | … | … | … | … | … | … |
其中每行都是公差不为0等差数列,每列都是等比数列,表示位于第i行第j列的数.
(1)写出的值:
(2)写出的计算公式,以及第2020个1所在“数阵”中所在的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:an(n∈N*).若正整数k(k≥5)使得a12+a22+…+ak2=a1a2…ak成立,则k=( )
A.16B.17C.18D.19
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)用分段函数的形式表示函数f(x);
(2)在平面直角坐标系中画出函数f(x)的图象;
(3)在同一平面直角坐标系中,再画出函数g(x)= (x>0)的图象(不用列表),观察图象直接写出当x>0时,不等式f(x)> 的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的离心率为2,过点、斜率为1的直线与双曲线交于、两点且,.
(1)求双曲线方程。
(2)设为双曲线右支上动点,为双曲线的右焦点,在轴负半轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且cosA=,cosB=.
(1)求sinC的值;
(2)若a-b=4-2,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,若,则称数列为“广义递增数列”,若,则称数列为“广义递减数列”,否则称数列为“摆动数列”.已知数列共4项,且,则数列是摆动数列的概率为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com