精英家教网 > 高中数学 > 题目详情

【题目】如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求异面直线A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

【答案】(1) .(2)

【解析】试题分析:(1)先根据条件建立空间直角坐标系,进而得相关点的坐标,求出直线A1BAC1的方向向量,根据向量数量积求出方向向量夹角,最后根据异面直线所成角与方向向量夹角之间相等或互补可得夹角的余弦值;(2)根据建立的空间直角坐标系,得相关点的坐标,求出各半平面的法向量,根据向量数量积求出法向量的夹角,最后根据二面角与法向量夹角之间关系确定二面角的正弦值.

试题解析:解:在平面ABCD内,过点AAEAD,交BC于点E.

因为AA1平面ABCD

所以AA1AEAA1AD.

如图,以为正交基底,建立空间直角坐标系A-xyz.

因为AB=AD=2,AA1= .

.

(1)

.

因此异面直线A1BAC1所成角的余弦值为.

(2)平面A1DA的一个法向量为.

为平面BA1D的一个法向量,

不妨取x=3,则

所以为平面BA1D的一个法向量,

从而,

设二面角B-A1D-A的大小为,则.

因为,所以.

因此二面角B-A1D-A的正弦值为.

点睛:利用法向量求解空间线面角面面角的关键在于“四破”:破“建系关”,构建恰当的空间直角坐标系;破“求坐标关”,准确求解相关点的坐标;破“求法向量关”,求出平面的法向量;破“应用公式关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四面体及其三视图如图所示,过棱的中点作平行于的平面分别交四面体的棱于点

(1)求证:四边形是矩形;

(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,过点的直线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,则实数m的值是______;若函数fx)在区间[-1a-2]上满足对任意x1x2,都有成立,则实数a的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求fx)的定义域;

2)当x∈(1+∞),

①求证:fx)在区间(1+∞)上是减函数;

②求使关系式f2+m)>f2m-1)成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①若是定义在上的偶函数,且在上是增函数,,则

②若锐角满足c,则

③若,则恒成立;

④要得到的图像,只需将的图像向右平移个单位:

其中真命题的个数有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点 在椭圆上, 在直线上,且

)求椭圆的离心率.

)当边通过坐标原点时,求的长及的面积.

)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级50名学生参加数学竞赛,根据他们的成绩绘制了如图所示的频率分布直方图,已知分数在的矩形面积为

求:分数在的学生人数;

这50名学生成绩的中位数精确到

若分数高于60分就能进入复赛,从不能进入复赛的学生中随机抽取两名,求两人来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体是由以等边三角形为底面的棱柱被平面所截而得,已知平面 的中点,

(1)求的长;

(2)求证:面

(3)求平面与平面相交所成锐角二面角的余弦值.

查看答案和解析>>

同步练习册答案