精英家教网 > 高中数学 > 题目详情
20.如图,四边形ABCD是矩形,DA⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,AC和BD交于点G.
(1)证明:AE∥平面BFD;
(2)求点F到平面BCD的距离.

分析 (1)连接GF,由三角形的中位线可得到GF∥AE,再由线面平行的判定定理得证;
(3)用等体积法,VD-ABE=VE-ABD,求出F到平面BCD的距离.

解答 解:(1)连接FG,因为BF垂直平面ACE,BF⊥CE,EB=BC=2,F为EC的中点,
GF为△AEC的中位线,GF∥AE,所以AE∥平面BFD;
(2)用等体积法:VD-ABE=VE-ABD,DA⊥平面ABE,
DA⊥AE,矩形ABCD中,BC∥DA,BC⊥AE,又BC⊥BF,
所以AE⊥平面CBE,所以AE⊥CE,
在直角△CBE中,EB=BC=2,CE=$2\sqrt{2}$,
在直角△CAE中,EA=2,CE=$2\sqrt{2}$,AC=$2\sqrt{3}$,${V_{D-ABE}}=\frac{1}{3}{S_{ABE}}•DA=\frac{4}{3}$,
${V_{E-ABD}}=\frac{1}{3}{S_{ABD}}•h=\frac{4}{3}$,h=$\sqrt{2}$.F为EC的中点,
F到平面ABC的距离为$\frac{{\sqrt{2}}}{2}$.

点评 本题主要考查线线,线面关系的转化,考查了线面平行,垂直的判定定理以及点到平面的距离,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.计算:
(1)$\root{4}{{{{(3-π)}^4}}}+{({0.008})^{-\frac{1}{3}}}-{({0.25})^{\frac{1}{2}}}×{({\frac{1}{{\sqrt{2}}}})^{-4}}$;
(2)$\frac{1}{2}lg\frac{32}{49}-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列命题:①直线$x+\sqrt{3}y-1=0$的倾斜角是$\frac{2π}{3}$;②已知过抛物线C:y2=2px(p>0)的焦点F的直线与抛物线C交于A(x1,y1),B(x2,y2)两点,则有${x_1}{x_2}=\frac{p^2}{4},{y_1}{y_2}=-{p^2}$;③已知F1、F2为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦点,点P为双曲线右支上异于顶点的任意一点,则△PF1F2的内心I始终在一条直线上.
其中所有正确命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等比数列{an}的前n项和为Sn,已知a1=2016,且an+2an+1+an+2=0(n∈N*),则S2016=(  )
A.0B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1、F2是双曲线的两焦点,过F2且垂直于实轴的直线交双曲线于P、Q两点,∠PF1Q=60°,则离心率e=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,点E、F在PC、AC上,PE=$\frac{1}{4}$PC.
(I)若EF∥平面PBD,求的$\frac{AF}{AC}$的值;
(II)若PA=AB,三棱锥C-BDE的体积为8,求正方形ABCD的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是{x|x<-3或0<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cos2$\frac{x}{2}$-$\sqrt{3}$sinx.
(1)求函数f(x)的最小正周期和值域;
(2)设α∈(-π,0),且f(α-$\frac{π}{6}$)=$\frac{13}{5}$,求sin(2α+$\frac{π}{12}$)值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:4x2+12x-7≤0,q:a-3≤x≤a+3.
(1)当a=0时,若p真q假,求实数x的取值范围;
(2)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案