精英家教网 > 高中数学 > 题目详情
给出如下四个命题:①回归直线方程y=
b
x+
a
必过点(
.
x
.
y
)
;②幂函数y=(m2-m-1)x1-m在R上是减函数;③“a,b∈[0,1]”是“函数f(x)=
1
3
ax3-bx2+ax+π
有两相异极值点的概率为
1
2
”的充要条件;④命题“?x∈[1,2],x2-1≥0”的否定为“?x∈[1,2],x2-1<0”.其中正确命题的个数是(  )
分析:第①个命题说明回归直线通过样本中心点.
②:由幂函数的概念判断出m2-m-1等于1;列出等式求出m,再根据象关于y轴对称验证其指数为偶数.再判断其单调性;
③:先利用导数求出函数f(x)=
1
3
ax3-bx2+ax+π
在R上有两个相异极值点的充要条件,得出关于a,b的约束条件,在a-o-b坐标系中画出可行域,再利用几何概型求出两者的面积比即可.
④:特称命题“?x∈[1,2],x2-1≥0”的否定是:把?改为?,其它条件不变,然后否定结论,变为一个特称命题.即“?x∈[1,2],x2-1<0”.
解答:解:对于①,已知n个散点Ai(xi,yi),(i=1,2,3,…,n)的线性回归方程为
y
=bx+a
,若a=
.
y
-b
.
x
,(其中
.
x
=
1
n
n
i=1
xi
.
y
=
1
n
n
i=1
yi
),则此回归直线必经过点(
.
x
.
y
),这说明回归直线一定经过样本中心点,故正确.
对于②:∵幂函数f(x)=(m2-m-1)x1-m
∴m2-m-1=1⇒m=-1或m=2
当m=2时,幂函数f(x)=(m2-m-1)x1-m=x-1
它不在R上是减函数,故错;
③:易得f′(x)=ax2-2bx+a,
对于函数f(x)=
1
3
ax3-bx2+ax+π
在R上有两个相异极值点的充要条件:
是a≠0且其导函数的判别式大于0,即a≠0且4b2-4a2>0,
又若a,b在区间[0,1]上取值,则b>a,
点(a,b)满足的区域如图中阴影部分所示,
其中正方形区域的面积为1,阴影部分的面积为
1
2

但反之不能成立,因为当a,b在区间[1,2]上取值时,也得到有两相异极值点的概率为
1
2
”.故错.
对于④,全称命题“?x∈[1,2],x2-1≥0”的否定是特称命题:“?x∈[1,2],x2-1<0”.故正确.
故选C.
点评:本小题主要考查函数单调性的应用、命题的否定、线性回归方程、几何概型等基础知识,考查运算求解能力,考查转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出如下四个命题
①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;
②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;
③公式tan(α+β)=
tanα+tanβ
1-tanα•tanβ
成立的条件是α≠kπ+
π
2
(k∈Z)且β≠kπ+
π
2
(k∈Z);
④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ;
其中假命题是(  )
A、①②B、②③C、③④D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x|x|+bx+c(b,c∈R),给出如下四个命题:①若c=0,则f(x)为奇函数;②若b=0,则函数f(x)在R上是增函数;③函数y=f(x)的图象关于点(0,c)成中心对称图形;④关于x的方程f(x)=0最多有两个实根.其中正确的命题
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

现给出如下四个命题:
①过点A(4,1)且在两坐标轴上的截距相等的直线共有两条;
②若平面α内的两条直线都与平面β平行,则α∥β;
③已知α∩β=l,若α内的直线m垂直于l,则α⊥β;
④已知α⊥β,α∩β=l,若α内的直线m与l不垂直,则m与β也不垂直.
请你写出其中所有真命题的序号:
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区一模)在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2当且仅当“a1>a2”或“a1=a2且b1>b2”.
按上述定义的关系“>”,给出如下四个命题:
①1>i>0; 
②若z1>z2,z2>z3,则z1>z3
③若z1>z2,则,对于任意z∈C,z1+z>z2+z;
④对于复数z>0,若z1>z2,则zz1>zz2
其中真命题的序号为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下四个命题:
①若a≥0,b≥0,则
2(a2+b2)
≥a+b

②若ab>0,则|a+b|<|a|+|b|;
③若a>0,b>0,a+b>4,ab>4,则a>2,b>2;
④若a,b,c,∈R,且ab+bc+ca=1,则(a+b+c)2≥3;
其中正确的命题是(  )

查看答案和解析>>

同步练习册答案