精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且椭圆上任意一点到两个焦点的距离之和为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与椭圆相交于两点,求面积的最大值.

【答案】(Ⅰ);(Ⅱ)

【解析】试题分析:(1)由椭圆定义得,又椭圆的短轴端点和焦点所组成的四边形为正方形,由椭圆几何条件得,解得 (2)联立直线与椭圆方程,利用韦达定理及弦长公式求得,再利用点到直线距离公式求高,根据三角形面积公式得.最后利用基本不等式求最值.

试题解析:解:(Ⅰ)由已知,设椭圆的方程为

∵椭圆的短轴端点和焦点所组成的四边形为正方形,

,∴

,得

∴椭圆的标准方程为

(Ⅱ)设

联立消去,得

此时有

由一元二次方程根与系数的关系,得

∵原点到直线的距离

,得.又,∴据基本不等式,得

当且仅当时,不等式取等号.

面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如下图:

(1)根据茎叶图中的数据完成下面的列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?

及格(

不及格

合计

很少使用手机

经常使用手机

合计

(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为 ,若,则此二人适合结为学习上互帮互助的“师徒”,记为两人中解决此题的人数,若,问两人是否适合结为“师徒”?

参考公式及数据: ,其中.

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的顶点P在底面ABCD上的投影恰好是A,其正视图与侧视图都是腰长为a的等腰直角三角形.则在四棱锥P﹣ABCD的任意两个顶点的连线中,互相垂直的异面直线共有 对.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别求适合下列条件的标准方程:

1)实轴长为12,离心率为,焦点在x轴上的椭圆;

2)顶点间的距离为6,渐近线方程为的双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2|x|﹣1.
(1)证明函数f(x)是偶函数;
(2)在如图所示的平面直角坐标系中作出函数f(x)的图象.并根据图象写出函数f(x)的单调区间;

(3)求函数f(x)当x∈[﹣2,4]时的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若f(1)= ,试求f(x)在区间[﹣2,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角三角形中, 为线段上一点,且,沿边上的中线折起到的位置.

(Ⅰ)求证:

(Ⅱ)当平面平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若是函数的极值点,1为函数的一个零点,求函数上的最小值.

(2)当时,函数轴在内有两个不同的交点,求的取值范围.(其中是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗骰子投掷两次分别得到点数ab则直线axby=0与圆(x2)2y22相交的概率为____________

查看答案和解析>>

同步练习册答案