精英家教网 > 高中数学 > 题目详情
4.如图,AB是⊙O的直径,CB切⊙O于点B,CD切⊙O于点D,交BA延长线于点E,若ED=$\sqrt{3}$,∠ADE=30°,则△BDC的外接圆的直径为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

分析 连接OD,OC,则OD⊥CE,求出OD=1,∠OCD=30°,利用OC为△BDC的外接圆的直径,可得结论.

解答 解:如图所示,连接OD,OC,则OD⊥CE,
∵∠ADE=30°,CD切⊙O于点D,
∴∠ADB=30°,
∴∠DOA=60°,
∴∠CEB=30°,
∵DE=$\sqrt{3}$,
∴OD=1,
∵CB切⊙O于点B,∠OCD=30°,
∴OC=2,
∴△BDC的外接圆的直径为2.
故选:C.

点评 本题考查与圆有关的比例线段,考查圆的切线性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.投掷两颗质地均匀的骰子,则向上的点数之和为5的概率等于$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点,则直线A1C与平面A1AB所成角的正弦值为(  )
A.$\frac{3}{5}$B.$\frac{\sqrt{21}}{7}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当太阳光线与水平面的倾斜角为60°时,要使一根长为a的细杆的影子最长,则细杆与水平地面所成的角为(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|y=ln(2x-1)},B={x|-1<x<3},则A∩B=(  )
A.(-1,3)B.(1,3)C.(-1,$\frac{1}{2}$)D.($\frac{1}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ex+sinx在(0,f(0))处的切线方程为y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,平行四边形ABCD中,AB=1,AD=4,CE=$\frac{1}{3}$CB.CF=$\frac{2}{3}$CD,∠DAB=60°,求$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图的程序后,输出的结果是(  )
A.1,3B.4,1C.0,0D.4,-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知象限角α的终边经过点($\frac{3}{5}$,$\frac{4}{5}$),则sinα=(  )
A.$\frac{4}{5}$B.$\frac{8}{5}$C.$\frac{24}{25}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案