已知集合A={x|x2-3x+2=0},B={x|x2-mx+m-1=0},若B⊆A,求实数m的取值范围.
解:化简条件得A={1,2},
由于B⊆A,
根据集合中元素个数,集合B分类讨论,B=∅,B={1}或{2},B={1,2}
当B=∅时,△=m
2-4(m-1)<0
∴m无解,
当B={1}或{2}时,
,
∴m=2
当B={1,2}时,
∴m=3.
综上所述,m=3或2.
分析:由题设得A={1,2},根据B⊆A,根据集合中元素个数集合B分类讨论,B=∅,B={1}或{2},B={1,2},由此求解实数m的取值范围.
点评:本题考查集合的交集及其运算的应用,综合性强,具有一定的难度.解题时要认真审题,仔细解答,注意分类讨论思想的合理运用.