精英家教网 > 高中数学 > 题目详情

【题目】如图,在宽为的路边安装路灯,灯柱高为,灯杆是半径为的圆的一段劣弧.路灯采用锥形灯罩,灯罩顶到路面的距离为,到灯柱所在直线的距离为.设为灯罩轴线与路面的交点,圆心在线段上.

(1)当为何值时,点恰好在路面中线上?

(2)记圆心在路面上的射影为,且在线段上,求的最大值.

【答案】(1)当时,点在路面中线上;(2)

【解析】

(1)以O为原点,以OA所在直线为y轴建立平面直角坐标系,求出PQ的方程,设C(a,b),根据CA=CP=r列方程组可得出a,b的值,从而求出r的值;

(2)用a表示出直线PQ的斜率,得出PQ的方程,求出Q的坐标,从而可得出|HQ|关于a的函数,根据a的范围和基本不等式得出|HQ|的最大值.

(1)以O为原点,以OA所在直线为y轴建立平面直角坐标系,则A(0,8),P(2,10),Q(7,0),

∴直线PQ的方程为2x+y﹣14=0.设C(a,b),则

两式相减得:a+b﹣10=0,又2a+b﹣14=0,解得a=4,b=6,

.∴当时,点Q恰好在路面中线上.

(2)由(1)知a+b﹣10=0,

当a=2时,灯罩轴线所在直线方程为x=2,此时HQ=0.

当a≠2时,灯罩轴线所在方程为:y﹣10=(x﹣2),

令y=0可得x=12﹣,即Q(12﹣,0),

∵H在线段OQ上,∴12﹣≥a,解得2≤a≤10.

∴|HQ|=12﹣﹣a=12﹣(+a)≤12﹣=12﹣

当且仅当=a即a=时取等号.∴|HQ|的最大值为(12﹣)m.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面.

(Ⅰ)求证:平面

(Ⅱ)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(I)求出的值;

(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中.对于不相等的实数,设下列说法正确的是(

A.对于任意不相等的实数,都有

B.对于任意的及任意不相等的实数,都有

C.对于任意的,存在不相等的实数,使得

D.对于任意的,存在不相等的实数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是为参数),曲线的直角坐标方程为,将曲线上的点向下平移1个单位,然后横坐标伸长为原来的2倍,纵坐标不变,得到曲线

1)求曲线和曲线的直角坐标方程;

2)若曲线和曲线相交于两点,求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示,参保年龄与每人每年应交纳的保费如下表所示.

年龄(单位:岁)

保费(单位:元)

1)求频率分布直方图中实数的值,并求出该样本年龄的中位数;

2)现分别在年龄段中各选出人共人进行回访.若从这人中随机选出人,求这人所交保费之和大于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,.

1)证明:平面

2)若中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的极值;

2)若对任意,均有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元).这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据y(单位:十亿元),绘制如表:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

编号x

1

2

3

4

5

6

7

8

9

10

销售额y

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根据以上数据绘制散点图,如图所示

1)根据散点图判断,哪一个适宜作为销售额关于的回归方程类型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果及如表中的数据,建立关于的回归方程,并预测2020年天猫双十一销售额;(注:数据保留小数点后一位)

3)把销售超过100(十亿元)的年份叫畅销年,把销售额超过200(十亿元)的年份叫狂欢年,从2010年到2019年这十年的畅销年中任取2个,求至少取到一个狂欢年的概率.

参考数据:

参考公式:

对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别

查看答案和解析>>

同步练习册答案