A. | 4 | B. | $\sqrt{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | 2$\sqrt{2}$ |
分析 由题意设直线AB方程为x=my+1,代入抛物线方程,由$\overrightarrow{FA}$=2$\overrightarrow{BF}$,则y1=-2y2,求得m的值,由|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=3$\sqrt{2}$,S△OAB=$\frac{1}{2}$丨OF丨•|y1-y2|=$\frac{3\sqrt{2}}{2}$.
解答 解:∵抛物线y2=4x,∴焦点F(1,0)
设直线AB方程为x=my+1,A(x1,y1),B(x2,y2),
将直线AB的方程与抛物线的方程联立$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,消去x得y2-4my-4=0.
∴y1+y2=4m,y1y2=-4. ①
∵$\overrightarrow{FA}$=2$\overrightarrow{BF}$,
∴y1=-2y2,②
联立①和②,消去y1,y2,
解得:m=$\frac{\sqrt{2}}{4}$,
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=3$\sqrt{2}$.
∵S△OAB=$\frac{1}{2}$丨OF丨•|y1-y2|=$\frac{3\sqrt{2}}{2}$,
故选C.
点评 本题考查直线与抛物线的位置关系,弦长公式及三角形的面积公式,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=cosx | B. | $y=\frac{1}{cosx}$ | C. | y=tanx | D. | y=sinx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com