精英家教网 > 高中数学 > 题目详情
11.O为坐标原点,F为抛物线C:y2=4x的焦点,过F的直线交C于A,B且$\overrightarrow{FA}$=2$\overrightarrow{BF}$,则△OAB的面积为(  )
A.4B.$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.2$\sqrt{2}$

分析 由题意设直线AB方程为x=my+1,代入抛物线方程,由$\overrightarrow{FA}$=2$\overrightarrow{BF}$,则y1=-2y2,求得m的值,由|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=3$\sqrt{2}$,S△OAB=$\frac{1}{2}$丨OF丨•|y1-y2|=$\frac{3\sqrt{2}}{2}$.

解答 解:∵抛物线y2=4x,∴焦点F(1,0)
设直线AB方程为x=my+1,A(x1,y1),B(x2,y2),
将直线AB的方程与抛物线的方程联立$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,消去x得y2-4my-4=0.
∴y1+y2=4m,y1y2=-4. ①
∵$\overrightarrow{FA}$=2$\overrightarrow{BF}$,
∴y1=-2y2,②
联立①和②,消去y1,y2
解得:m=$\frac{\sqrt{2}}{4}$,
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=3$\sqrt{2}$.
∵S△OAB=$\frac{1}{2}$丨OF丨•|y1-y2|=$\frac{3\sqrt{2}}{2}$,
故选C.

点评 本题考查直线与抛物线的位置关系,弦长公式及三角形的面积公式,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在矩形ABCD中,AB=2,BC=1,现将△ABC沿对角线AC折起,使点B到达点B′的位置,使平面AB′C与平面ACD垂直得到三棱锥B′-ACD,则三棱锥B′-ACD的外接球的表面积为5π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数);在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=2sinθ;
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线l:y=kx(x≥0)与曲线C1,C2的交点分别为A,B(A,B异于原点),当斜率$k∈[1,\sqrt{3})$时,求|OA|•|OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=2x3+x,实数m满足f(m2-2m)+f(m-6)<0,则m的取值范围是(-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程x±$\sqrt{3}$y=0,则C1与C2的离心率之积为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.关于函数f (x)=4sin(2x+$\frac{π}{3}$),(x∈R)有下列命题:
①y=f(x)是以2π为最小正周期的周期函数;
②y=f(x)的图象关于点(-$\frac{π}{6}$,0)对称;
③y=f(x)的图象关于直线x=-$\frac{5π}{12}$对称;
其中正确的序号为③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知过抛物线方程y2=2px,过焦点F的直线l斜率为k(k>0)与抛物线交于A,B两点,满足$\frac{1}{{|{\overrightarrow{AF}}|}}+\frac{1}{{|{\overrightarrow{FB}}|}}=1$,又$\overrightarrow{AF}=2\overrightarrow{FB}$,则直线l的方程为y=2$\sqrt{2}$(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,当$x∈(0,\frac{π}{2})$时,与函数$y={x^{-\frac{1}{3}}}$单调性相同的函数为(  )
A.y=cosxB.$y=\frac{1}{cosx}$C.y=tanxD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆x2+y2=4与圆x2+y2-6x+8y-24=0的位置关系是(  )
A.相交B.相离C.内切D.外切

查看答案和解析>>

同步练习册答案