精英家教网 > 高中数学 > 题目详情
已知集合A={-2,-1},B={-1,2,3},则A∩B=
 
考点:交集及其运算
专题:集合
分析:利用交集的定义求解.
解答: 解:∵集合A={-2,-1},B={-1,2,3},
∴A∩B={-1}.
故答案为:{-1}.
点评:本题考查交集的求法,是基础题,解题时要认真审题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的顶点为坐标原点O,焦点F(0,1)
(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A、B两点,若直线AO与BO分别交直线l:y=x-2于M、N两点,当|MN|=
16
7
时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax+b(b>0)的图象经过点P(1,3),如图所示,则
4
a-1
+
1
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数(2+ai)(1-i)(a∈R)是纯虚数(是虚数单位),则a的值为(  )
A、-2B、-1C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“任意x∈R,2x≤0”的否定是(  )
A、不存在x∈R,2x>0
B、存在x∈R,2x>0
C、对任意的x∈R,2x≤0
D、对任意的x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂计划用甲,乙两台机器生产A、B两种产品,每种产品都要依次进行甲、乙机器的加工,已知生产一件A产品在甲、乙机器上加工的时间分别为2小时和3小时,生产一件B产品在甲、乙机器上加工的时间分别为4小时和2小时,甲、乙机器每周可分别工作180小时和150小时,若每件A产品的利润是40元,每件B产品的利润是60元,问此工厂应如何安排生产才能获得最大的利润(即如何确定一周内每种产品生产的数量)?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A′B′C′D′中边长为1,过A′,B,C′三点的平面将正方体截去一个角,试画出剩余部分几何体的二视图,并求其体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

1
a
1
b
<0(a,b∈R),则下列不等式恒成立的是(  )
A、a<b
B、a+b>ab
C、|a|>|b|
D、ab<b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),F1,F2分别为其左右焦点,A1,A2分别为其左右顶点,若在该双曲线的右支上存在一点P,使得PF1与以线段A1A2为直径的圆相切于点M,且点M为线段PF1的中点,则该双曲线的离心率为(  )
A、
5
B、2
C、
3
D、
2

查看答案和解析>>

同步练习册答案