已知函数f(x)=ax2-(2a+1)x+2ln x,a∈R.
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.
科目:高中数学 来源: 题型:解答题
已知函数.其中.
(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(2)若f(x)≤g(x)-1对任意x>0恒成立,求实数的值;
(3)当<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2+xsin x+cos x.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,(为常数),直线与函数、的图象都相切,且与函数图象的切点的横坐标为.
(1)求直线的方程及的值;
(2)若 [注:是的导函数],求函数的单调递增区间;
(3)当时,试讨论方程的解的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数在处存在极值.
(1)求实数的值;
(2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围;
(3)当时,讨论关于的方程的实根个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函数f(x)的单调区间;
(2)对一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知函数f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求实数t的取值范围;
(2)证明:<ln<,其中0<a<b;
(3)设[x]表示不超过x的最大整数,证明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知a,b为常数,a¹0,函数.
(1)若a=2,b=1,求在(0,+∞)内的极值;
(2)①若a>0,b>0,求证:在区间[1,2]上是增函数;
②若,,且在区间[1,2]上是增函数,求由所有点形成的平面区域的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com