精英家教网 > 高中数学 > 题目详情
给出以下四个结论:
①函数f(x)=关于点(1,3)中心对称;
②在△ABC中,“bcosA=acosB”是“△ABC为等腰三角形”的充要条件;
③若将函数f(x)=sin(2x-)的图象向右平移Φ(Φ>0)个单位后变为偶函数,则Φ的最小值是
④已知数列{an}是等比数列,Sn是其前n项和,则当k为奇数时,Sk,S2k-Sk,S3k-S2k成等比数列.其中正确的结论是   
【答案】分析:①由图象变换的知识可知正确;②在△ABC中,由bcosA=acosB,可得△ABC为等腰三角形,但当△ABC为等腰三角形时,不能推出bcosA=acosB;③由题意可得Φ=,结合Φ>0,可得结论;④由等比数列的“片段和”仍成等比数列,可得答案.
解答:解:①函数f(x)===3,其图象可由函数y=的图象向右平移1个单位,
向上平移3个单位得到,故函数y=的对称中心也由(0,0)移到点(1,3),
故已知函数的图象关于点(1,3)中心对称,故正确;
②在△ABC中,由bcosA=acosB,可得sinBcosA=sinAcosB,即sin(A-B)=0,可得A=B,故△ABC为等腰三角形,
而当△ABC为等腰三角形时,可能B=C,不能推出A=B,也不能推出bcosA=acosB,故不是充要条件,故错误;
③若将函数f(x)=sin(2x-)的图象向右平移Φ(Φ>0)个单位后,解析式变为f(x)=sin(2x-2Φ-),
由偶函数可得2Φ+=kπ+,k∈Z,解得Φ=,结合Φ>0,可得当k=0时,Φ取最小值,故正确;
④已知数列{an}是等比数列,Sn是其前n项和,当公比q=1时,Sk,=ka1,S2k-Sk=ka1,S3k-S2k=ka1,显然有Sk,S2k-Sk,S3k-S2k成等比数列,
当公比q≠1时,Sk=,S2k-Sk=-=q,S3k-S2k=-=q2
显然也有Sk,S2k-Sk,S3k-S2k成等比数列,故正确.
故答案为:①③④
点评:本题考查命题真假的判断,涉及等比数列的性质和三角函数的性质,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下四个结论:
(1)函数f(x)=
x-1
x+1
的对称中心是(-1,-1);
(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,则3b-2a>1;
(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
π
12
其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,AH为BC边上的高,给出以下四个结论:
AH
BC
=0
;②
AB
AH
=c•sinB
;③
BC
•(
AC
-
AB
)
=b2+c2-2bc•cosA;④
AH
•(
AB
+
BC
)=
AH
AB
.其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A、B、C所对边分别为a、b、c,AH为BC边上的高,给出以下四个结论:
①若a=1,b=
3
,则“A=
π
6
”是“B=
π
3
”成立的充分不必要条件;
AH
•(
AC
-
AB
)=0

BC
•(
AB
-
AC
)=b2+c2-2bccosA

AH
•(
AB
+
BC
)=
AH
AB

其中所有真命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域都是D,又h(x)=f(x)+g(x).若f(x),g(x)的最大值分别是M、N,最小值分别是m、n,给出以下四个结论:
(1)h(x)的最大值是M+N;
(2)h(x)的最小值是m+n;
(3)h(x)的值域是{y|m+n≤y≤M+N};
(4)h(x)的值域是{y|m+n≤y≤M+N}的一个子集.
则正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个结论:
①函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

②若不等式mx2-mx+1>0对任意的x∈R都成立,则0<m<4;
③已知点P(a,b)与点Q(l,0)在直线2x-3y+1=0两侧,则3b-2a>1;
④若将函数f(x)=sin(2x-
π
3
)
的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是
π
12

其中正确的结论是:
 

查看答案和解析>>

同步练习册答案