精英家教网 > 高中数学 > 题目详情
3.已知p:“?x0∈R,使得x02+mx0+2m-3<0”;q:命题“?x∈[1,2],x2-m≤0”,若p∨q为真,p∧q为假,求实数m的取值范围.

分析 求出命题p,q为真命题的等价条件,结合p∨q为真,p∧q为假得到p,q一真一假,根据条件关系解不等式即可.

解答 解:∵命题p为真命题的充要条件是△>0,即m2-4(2m-3)>0,
∴m>6或m<2.…(3分)
命题q为真命题的充要条件是m≥4 …(6分)
若p∨q为真,p∧q为假,则p,q一真一假
若p真q假,得m<2;
若q真p假得4≤m≤6
∴实数m的取值范围为m<2或4≤m≤6 …(10分)

点评 本题主要考查复合命题的真假之间的关系的判断,求出命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|log5(ax+1)<1}(a≠0),B={x|2x2-3x-2<0}.
(1)求集合B;
(2)求证:A=B的充要条件为a=2;
(3)若命题p:x∈A,命题q:x∈B且p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{3x-y≥1}\\{y≥x+1}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最小值为2,则$\frac{2}{a}+\frac{3}{b}$的最小值为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知两个具有线性相关关系的变量x,y的测量数据如下:
x1236
y2356
通过最小二乘法求其线性回归方程,并预报当变量x为14时,变量y的值.
( 注:线性回归方程y=bx+a,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果关于x的方程x2-2(1-m)x+m2=0有两实数根α,β,则α+β的取值范围为(  )
A.α+β≥$\frac{1}{2}$B.α+β≤$\frac{1}{2}$C.α+β≥1D.α+β≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{2x}{x^2+6}$,若f(x)>k的解集为{x|x<-3或x>-2},求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)满足f(logax)=$\frac{a}{{a}^{2}-1}$(x-x-1),其中a>0且a≠1.
(1)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2]时,f(x)-$\frac{5}{2}$的值恒为负数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=sin({2x-\frac{π}{6}})-2{sin^2}x+1(x∈R)$的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求π的近似值可用如下公式$\frac{π}{6}$=$\frac{1}{{1}^{2}}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{n}^{2}}$,直到第n项的值小于0.00001为止,最后一项不计入求和,然后求π的近似值,写出程序,并画出程序框图.

查看答案和解析>>

同步练习册答案