精英家教网 > 高中数学 > 题目详情
11.求下列函数的导数:
(1)y=sin43xcos34x;
(2)y=2(${e}^{\frac{x}{2}}+{e}^{{-}^{\frac{x}{2}}}$).

分析 分别根据导数的运算法则和复合函数的求导法则求导即可.

解答 解:(1)y′=(sin43x)′cos34x+sin43x(cos34x)′,
=4sin33x•(sin3x)′•cos34x+sin43x•3cos24x•(cos4x)′,
=12sin33x•cos3x•cos34x-12sin43x•cos24x•sin4x,
=12sin33x•cos24x(cos3xcos4x-sin3xsin4x)
=12sin33x•cos24x•cos7x,
(2)y′=2[(${e}^{\frac{x}{2}}$)′+(${e}^{-\frac{x}{2}}$)′]=2($\frac{1}{2}$${e}^{\frac{x}{2}}$-$\frac{1}{2}$${e}^{-\frac{x}{2}}$)=${e}^{\frac{x}{2}}$-${e}^{-\frac{x}{2}}$.

点评 本题考查了导数的运算法则和复合函数的求导法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设奇函数f(x)在(0,+∞)上为增函数,且f(3)=0,则不等式$\frac{f(x)-f(-x)}{2}$>0的解集为(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若质点P的位移S(单位:m)关于运动时间t的函数关系式为:S=4ln(t+1)+t2(t>0),则其瞬时速度的最小值为(4$\sqrt{2}$-2)(m/s)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求曲线$\left\{\begin{array}{l}{x=2{e}^{t}}\\{y={e}^{-t}}\end{array}\right.$在t=0相应的点处的切线方程和法线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数h(x)=lnx-x-$\frac{m}{x}$有两个极值点x1,x2,且x1<x2
(1)写出函数h(x)的单调区间(用x1,x2表示,不需要说明理由);
(2)如果函数F(x)=h(x)+$\frac{1}{2}$x在(1,b)上为增函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,M,N分别是AB,PC的中点.求证:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在五边形ABCDE中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AE}$=$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{c}$,$\overrightarrow{ED}$=$\overrightarrow{d}$,用$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$、$\overrightarrow{d}$表示$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.指出下列各题中,命题p是q的什么条件:
(1)p:△ABC是等腰三角形,q:△ABC是等腰直角三角形;
(2)设a>b>0,命题p:c>d>0,q:ac>bd.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.按下列条件,把x2+y2-2rx=0(r>0)化为参数方程:
(1)以曲线上的点与圆心的连线和x轴正方向的夹角φ为参数;
(2)以曲线上的点与原点的连线和x轴正方向的夹角θ为参数.

查看答案和解析>>

同步练习册答案