分析 (1)由条件化简函数的解析式,再利用函数的单调性求得函数f(x)的最小值.
(2)根据 $\frac{1}{m}+\frac{4}{n}$=($\frac{1}{m}$+$\frac{4}{n}$)•$\frac{2}{3}(m+n)$,利用基本不等式求得它的最小值.
解答 解:(1)函数f(x)=|x+1|+|2x-1|=$\left\{\begin{array}{l}{-3x,x<-1}\\{2-x,-1≤x≤\frac{1}{2}}\\{3x,x>\frac{1}{2}}\end{array}\right.$,故函数的减区间为(-∞,$\frac{1}{2}$],增区间为($\frac{1}{2}$,+∞),
故当x=$\frac{1}{2}$时,函数f(x)取得最小值为a=$\frac{3}{2}$.
(2)已知m,n>0,m+n=a=$\frac{3}{2}$,∴$\frac{1}{m}+\frac{4}{n}$=($\frac{1}{m}$+$\frac{4}{n}$)•$\frac{2}{3}(m+n)$=$\frac{2}{3}$[1+$\frac{4m}{n}$+$\frac{n}{m}$+4]=$\frac{10}{3}$+$\frac{2}{3}$($\frac{4m}{n}$+$\frac{n}{m}$)
≥$\frac{10}{3}$+$\frac{2}{3}$•2$\sqrt{4}$=6,当且仅当$\frac{4m}{n}$=$\frac{n}{m}$时,取等号,
故$\frac{1}{m}+\frac{4}{n}$的最小值为6.
点评 本题主要考查利用函数的单调性求函数的最值,基本不等式的因公,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$+$\frac{1}{5}$$\overrightarrow{c}$ | B. | $\frac{1}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{4}{5}$$\overrightarrow{c}$ | C. | $\frac{2}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{1}{5}$$\overrightarrow{c}$ | D. | $\frac{1}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{3}{5}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com