精英家教网 > 高中数学 > 题目详情

已知:平面α与平面β相交于直线a,直线b与α、β都平行,求证:ba

答案:
解析:

  证明:在a上取点PbP确定平面交于交于

  ∵bb

  ∴bb

  ∴重合,而,实际上是a三线重合,

  ∴ab


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等腰梯形ABCD的上底AB=3,下底CD=1,高DO=1.以高线DO为折痕,将平面ADO折起,使得平面ADO⊥平面BCDO,点H为棱AC的中点.
(1)求直线OC与直线AB所成的余弦值;
(2)求平面ADO与平面ACB所成的锐二面角的余弦值;
(3)在平面ADO内找一点G,使得GH⊥平面ACB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)如图1中矩形ABCD中,已知AB=2,AD=2
2
,MN分别为AD和BC的中点,对角线BD与MN交于O点,沿MN把矩形ABNM折起,使平面ABNM与平面MNCD所成角为60°,如图2
(1)求证:BO⊥DO;
(2)求AO与平面BOD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:陕西省宝鸡市2010届高三教学质量检测(二)数学理合试题 题型:044

如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点;

(1)求证:AF∥平面BCE;

(2)求平面BCE与平面ACD所成锐二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等腰梯形ABCD的上底AB=3,下底CD=1,高DO=1.以高线DO为折痕,将平面ADO折起,使得平面ADO⊥平面BCDO,点H为棱AC的中点.
(1)求直线OC与直线AB所成的余弦值;
(2)求平面ADO与平面ACB所成的锐二面角的余弦值;
(3)在平面ADO内找一点G,使得GH⊥平面ACB.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省杭州、绍兴、金华、温州、衢州七校高二(下)期中数学试卷(理科)(解析版) 题型:解答题

已知等腰梯形ABCD的上底AB=3,下底CD=1,高DO=1.以高线DO为折痕,将平面ADO折起,使得平面ADO⊥平面BCDO,点H为棱AC的中点.
(1)求直线OC与直线AB所成的余弦值;
(2)求平面ADO与平面ACB所成的锐二面角的余弦值;
(3)在平面ADO内找一点G,使得GH⊥平面ACB.

查看答案和解析>>

同步练习册答案