精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台中, 分别是 的中点, 平面,且.

1)证明: 平面

2)若 为等边三角形,求四棱锥的体积.

【答案】1见解析2

【解析】试题分析:(1)相交于,连接根据三角形中位线定理可得由线面平行的判定定理可得平面;(2)四棱锥的体积等于三棱柱的体积减去三棱锥的体积,先证明是棱柱与棱锥的高,再求出三棱柱的体积及三棱锥的体积,从而可得四棱锥的体积.

试题解析:(1)设相交于,连接

由题意可知,

所以四边形是平行四边形,

从而的中点.

的中点,

所以

平面 平面

所以平面

2)易证 是三棱柱,

又因为平面,所以是此三棱柱的高,

同理也是三棱锥的高.

因为 为等边三角形,

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的奇函数,且当时,.

1)求函数的解析式;

2)当时,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,两条曲线交于两点.

(1) 求直线与曲线交点的极坐标;

(2) 已知为曲线 (为参数)上的一动点,设直线与曲线的交点为,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

1)求的方程;

2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.

证明:

MAB,MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于AB的任意一点,垂足为E,点FPB上一点,则下列判断中不正确的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆.

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)设动圆同时平分圆的周长、圆的周长.

①证明:动圆圆心在一条定直线上运动;

②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.

(1)求||;

(2)已知点D是AB上一点,满足,点E是边CB上一点,满足

①当λ=时,求

②是否存在非零实数λ,使得?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.

查看答案和解析>>

同步练习册答案