精英家教网 > 高中数学 > 题目详情
5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为18(用数字作答).

分析 分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.

解答 解:从0、2中选一个数字0,则0只能排在十位,
从1、3、5中选两个数字排在个位与百位,共有A32=6种;
从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有A32=6种;
2排在百位,从1、3、5中选两个数字排在个位与十位,共有A32=6种;
故共有3A32=18种
故答案为:18.

点评 本题考查计数原理的运用,考查分类讨论的数学思想,正确分类是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=$\sqrt{2}$.
(1)求证:AB⊥PC;
(2)求侧面BPC与侧面DPC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,点A(${\frac{1}{3}$,$\frac{2}{3}}$)在椭圆E上,射线AO与椭圆E的另一交点为B,点P(-4t,t)在椭圆E内部,射线AP,BP与椭圆E的另一交点分别为C,D.
(1)求椭圆E的方程;
(2)求证:CD∥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在△ABC中,AB=AC,△ABC的外接圆是⊙O,D是劣弧$\widehat{AC}$上的一点,弦AD,BC的延长线相交于点E,连结BD并延长到点F,连结CD.
(1)求证:DE平分∠CDF;
(2)求证:AB2=AD•AE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A={x|-3≤x≤a}≠∅,B={y|y=3x+10,x∈A},C={z|5-a≤z≤8}且B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}-x-2,x≥0\\ \frac{x}{x+4}+{log_4}|x|,x<0\end{array}$,则f(f(2))=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线经过点(3,-4),则此双曲线的离心率为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:?x∈R使x2-2x+a2=0;命题q:?x∈R,都有ax2-ax+1>0.若p∧(¬q)是真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案