精英家教网 > 高中数学 > 题目详情
已知△ABC的两个顶点为B(-2,0),C(2,0),周长为12.
(1)求顶点A的轨迹G方程;
(2)若直线与点A的轨迹G交于M、N两点,求△BMN的面积.
【答案】分析:(1)根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.
(2)由,解得M(2),N(-2,-),故=2,由B(-2,0)到直线的距离d=,能求出△BMN的面积.
解答:解:(1)∵△ABC的两顶点B(-2,0),C(2,0),周长为12,∴BC=4,AB+AC=8,
∵8>4,∴点A到两个定点的距离之和等于定值,
∴点A的轨迹是以B,C为焦点的椭圆,
∵2a=8,2c=4,
所以椭圆的标准方程是
(2)由,得3x2+4(2=48,
∴4x2=48,x2=12,
解得

∴M(2),N(-2,-
=2
∵B(-2,0)到直线的距离d=
∴△BMN的面积S==2
点评:本题考查直线与圆锥曲线的综合应用能力,综合性强,是高考的重点.本题具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的两个顶点A、B的坐标分别是(-5,0)、(5,0),边AC、BC所在直线的斜率之积为-
12
,求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两个顶点为B(-2,0),C(2,0),周长为12.
(1)求顶点A的轨迹G方程;
(2)若直线y=
12
x
与点A的轨迹G交于M、N两点,求△BMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两个顶点坐标为B(1,4)、C(6,2),顶点A在直线x-y+3=0上,若△ABC的面积为21.则顶点A的坐标为
(7,10)或(-5,-2)
(7,10)或(-5,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两个顶点A,B的坐标分别是(0,-1),(0,1),且AC,BC所在直线的斜率之积等于m(m≠0).
(1)求顶点C的轨迹E的方程,并判断轨迹E为何种圆锥曲线;
(2)当m=-
12
时,过点F(1,0)的直线l交曲线E于M,N两点,设点N关于x轴的对称点为Q(M,Q不重合) 试问:直线MQ与x轴的交点是否为定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

同步练习册答案