【题目】已知△ABC的顶点B(-1,-3),边AB上的高CE所在直线的方程为 ,BC边上中线AD所在的直线方程为 .
(1)求直线AB的方程;
(2)求点C的坐标.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x .
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,求实数a的取值范围;
(3)存在x∈(﹣∞,0],使|af(x)﹣f(2x)|>1成立,试求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+(2a+1)x+b,其中a,b∈R. (Ⅰ)当a=1,b=﹣4时,求函数f(x)的零点;
(Ⅱ)如果函数f(x)的图象在直线y=x+2的上方,证明:b>2;
(Ⅲ)当b=2时,解关于x的不等式f(x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件样本,测量这些样本的一项质量指标值,由测量结果得如下频数分布表:
质量指标 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125] |
频数 | 6 | 26 | 38 | 22 | 8 |
则样本的该项质量指标值落在[105,125]上的频率为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,则下列叙述正确的是( )
A.AC⊥平面ABB1A1
B.CC1与B1E是异面直线
C.A1C1∥B1E
D.AE⊥BB1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱 中,底面 是边长为2的正方形, 分别为线段 , 的中点.
(1)求证: ||平面 ;
(2)四棱柱 的外接球的表面积为 ,求异面直线 与 所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
(3)设SA=4,AB=2,当OE丄SC时,求二面角E﹣BD﹣C余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com