分析 利用单调性的定义,即可证明函数y=-x3在定义域R上的单调性.
解答 解:函数y=f(x)=-x3是定义域R上的减函数,证明如下;
任取x1、x2∈R,且x1<x2,
则f(x1)-f(x2)=-${{x}_{1}}^{3}$-(-${{x}_{2}}^{3}$)=${{x}_{2}}^{3}$-${{x}_{1}}^{3}$=(x2-x1)(${{x}_{2}}^{2}$+x1x2+${{x}_{1}}^{2}$)=(x2-x1)[${{(x}_{1}+\frac{{x}_{2}}{2})}^{2}$+$\frac{3}{4}$${{x}_{2}}^{2}$],
∵x1<x2,
∴x2-x1>0${{(x}_{1}+\frac{{x}_{2}}{2})}^{2}$+$\frac{3}{4}$${{x}_{2}}^{2}$>0;
∴f(x1)-f(x2)>0,
即f(x1)>f(x2);
∴函数y=f(x)是定义域R上的减函数.
点评 本题考查了利用函数的单调性定义来判断函数的单调性问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | e | D. | e+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com