分析 先将函数进行换元,转化为一元二次函数问题.结合函数f(x)的图象,确定m的取值范围.
解答 先画出f(x)的图象,如下图:
令t=f(x),原方程2[f(x)]2+3mf(x)+1=0可化为:
2t2+3mt+1=0,------------①
由图可知,方程f(x)=t对于每个属于(0,1)的t都有四个解,
因此,要使原函数有8个不同的零点,则关于t的方程①在(0,1)内有两个相异的实根,
根据一元二次方程实根分布,问题等价为:
$\left\{\begin{array}{l}{△=9m^2-8>0}\\{-\frac{3m}{4}∈(0,1)}\\{2+3m+1>0}\end{array}\right.$,解得,m∈(-1,-$\frac{2\sqrt{2}}{3}$).
答案为:(-1,-$\frac{2\sqrt{2}}{3}$).
点评 本题主要考查了复合函数零点的个数,一元二次方程的实根分布,以及换元法和数形结合法的解题思想,属中档题.
科目:高中数学 来源: 题型:选择题
A. | y=x-1 | B. | y=x2 | C. | y=x3 | D. | $y={x^{-\frac{1}{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|x>0} | B. | {x|x≥0} | C. | {x|x≥-1} | D. | {x|x>-1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com