精英家教网 > 高中数学 > 题目详情

已知直线l:2mx-y-8m-3=0和圆C:

(1)试证:不论m为何实数,直线l与圆C总相交;

(2)m为何值时,l被圆C截得弦长最小,并求出这个最小值.

答案:略
解析:

解 ①直线l2mxy8m3=0,圆C,其圆心(3,-6),半径r=5

则圆心到直线l的距离两边平方并整理得,

为使上面关于m的方程有实数解

,解得

∴不论m为何实数,直线l与圆C总相交.

②据平面几何定理(同圆中弦心距大的弦反而小)由①可知,∴当时,弦取最小值,其最小值为,此时


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:2mx-y-8m-3=0和圆C:(x-3)2+(y+6)2=25.
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.
(1)m∈R时,证明l与C总相交; 
(2)m取何值时,l被C截得弦长最短,求此弦长.

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北冀州中学高一年级下学期期末考试文科数学(A卷) 题型:解答题

(本小题满分12分)已知直线l2mx-y-8m-3=0和
C:(x-3)2+(y+6)2=25.
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北冀州中学高一年级下学期期末考试文科数学(B卷) 题型:解答题

(本小题满分12分)已知直线l2mx-y-8m-3=0和

C:(x-3)2+(y+6)2=25.

(1)证明:不论m取什么实数,直线l与圆C总相交;

(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北冀州中学高一年级下学期期末考试文科数学(A卷) 题型:解答题

(本小题满分12分)已知直线l2mx-y-8m-3=0和

C:(x-3)2+(y+6)2=25.

(1)证明:不论m取什么实数,直线l与圆C总相交;

(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

 

 

查看答案和解析>>

同步练习册答案