精英家教网 > 高中数学 > 题目详情
10.已知定义在N*上的单调增函数y=f(x),对于任意的n∈N*,都有f(n)∈N*且f(f(n))=3n恒成立,则f(2017)-f(1999)=18.

分析 依次令n=1、2、3、4…,分别计算f(1)、f(2)、f(3)、f(4)…,根据规律归纳f(x)的解析式即可计算出答案.

解答 解:令n=1得f(f(1))=3,
若f(1)=1,则f(f(1))=f(1)=1,与f(f(1))=3矛盾;
若f(1)=3,则f(f(1))=f(3)=3,与f(x)是增函数矛盾;
同理f(1)不可能大于3,
∴f(1)=2,
∴f(f(1))=f(2)=3,
令n=2得f(f(2))=f(3)=6,
令n=3得f(f(3))=f(6)=9,
∴f(4)=7,f(5)=8.
令n=4得f(f(4))=f(7)=12,
令n=5得f(f(5))=f(8)=15,
令n=6得f(f(6))=f(9)=18,
令n=7得f(f(7))=f(12)=21,
∴f(10)=19,f(11)=20,
令n=8得f(f(8))=f(15)=24,
∴f(13)=22,f(14)=22

归纳可得:当n≥9时,f(n)=n+9,
∴f(2017)-f(1999)=(2017+9)-(1999+9)=18.
故答案为18.

点评 本题考查了抽象函数的函数值计算,归纳推理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某三棱锥的三视图如图所示,主视图和俯视图为全等的等腰直角三角形,则该棱锥最长的棱长为(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若 n∈N且 n<20,则 (28-n)(29-n)…(34-n)等于(  )
A.A${\;}_{27-n}^{8}$B.A${\;}_{34-n}^{27-n}$C.A${\;}_{34-n}^{7}$D.A${\;}_{34-n}^{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B,C成等差数列,且最大边和最小边是方程2x2-6x+3=0的两根,则△ABC的外接圆半径等于$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合A={x|2a<x<a+5},B={x|x<6},且A?B,则实数a的取值范围为(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(0<a<b)的实轴长为4,截直线y=x-2所得弦长为20$\sqrt{2}$.求:
(1)双曲线的方程;
(2)渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,已知两定点$A(-\frac{1}{3}\;,\;0)$和$B({\frac{1}{3}\;,\;0})$,点M是平面内的动点,且$|{\overrightarrow{AB}+\overrightarrow{AM}}|+|{\overrightarrow{BA}+\overrightarrow{BM}}|=4$.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设F2(1,0),R(4,0),自点R引直线l交曲线E于Q,N两点,求证:射线F2Q与射线F2N关于直线x=1对称.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在棱锥P-ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为3$\sqrt{2}$、4$\sqrt{2}$、5$\sqrt{2}$,则以线段PQ为直径的球的体积为$\frac{500}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)满足$f({\frac{1}{x+1}})=3x-1$,则f(x)的解析式是f(x)=$\frac{3}{x}$-4(不写定义域).

查看答案和解析>>

同步练习册答案