精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCDABPA1ADFPB中点,EBC上一点.

1)求证:AF⊥平面PBC

2)当BE为何值时,二面角CPED45°.

【答案】1)证明见解析(2BE

【解析】

1)以为原点,轴,轴,轴,建立空间直角坐标系,利用向量法能证明平面

2)设,求出平面的法向量和平面的法向量,利用向量法能求出当时,二面角

解:(1)证明:以为原点,轴,轴,轴,建立空间直角坐标系,

中点,

,0,,0,,1,,1,

平面

(2)设,1,

设平面的法向量

,得

平面的法向量为

二面角

解得

时,二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点.

(1)证明:平面

(2)若侧面与底面垂直,求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,点M,N分别为线段A1B,B1C的中点.

(1)求证:MN∥平面AA1C1C;

(2)若∠ABC=90°,AB=BC=2,AA1=3,求点B1到面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:

年份x

2014

2015

2016

2017

2018

储蓄存款y(千亿元)

5

6

7

8

10

为便于计算,工作人员将上表的数据进行了处理(令),得到下表:

时间t

1

2

3

4

5

储蓄存款z

0

1

2

3

5

1)求z关于t的线性回归方程;

2)通过(1)中的方程,求出y关于x的回归方程;

3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

附:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y2+2x-4y+3=0.

(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.

(2)从圆C外一点P(x1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的单调减区间;

(2)若关于x的不等式恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某年级100名学生期中考试数学成绩(单位:分)的频率分布直方图如图所示,其中成绩分组区间是[5060)[6070)[7080)[8090)[90100].

1)求图中a的值,并根据频率分布直方图估计这100名学生数学成绩的平均分;

2)从[7080)[8090)分数段内采用分层抽样的方法抽取5名学生,求在这两个分数段各抽取的人数;

3)现从第(2)问中抽取的5名同学中任选2名参加某项公益活动,求选出的两名同学均来自[7080)分数段内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点及圆.

(1)若直线过点且与圆心的距离为1,求直线的方程;

(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;

(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

同步练习册答案