精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函数f(x)有且只有一个极值点,求实数a的取值范围;
(2)对于函数f(x)、f1(x)、f2(x),若对于区间D上的任意一个x,都有f1(x)<f(x)<f2(x),则称函数f(x)是函数f1(x)、f2(x)在区间D上的一个“分界函数”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 问是否存在实数a,使得f(x)是函数f1(x)、f2(x)在区间(1,+∞)上的一个“分界函数”?若存在,求实数a的取值范围;若不存在,说明理由.

【答案】
(1)解:f′(x)= ,x∈(1,+∞),

令g(x)=x2﹣2ax+1,由题意得:g(x)在[1,+∞)有且只有1个零点,

∴g(1)<0,解得:a>1


(2)解:若f(x)是函数f1(x)、f2(x)在区间(1,+∞)上的一个“分界函数”,

则x∈(1,+∞)时,f(x)﹣(1﹣a)x2<0恒成立且f(x)﹣(1﹣a2)lnx>0恒成立,

令h(x)=f(x)﹣(1﹣a)x2=(a﹣ )x2﹣2ax+lnx,

则h′(x)=

①2a﹣1≤0即a≤ 时,当x∈(1,+∞)时,h′(x)<0,h(x)递减,且h(1)=﹣ ﹣a,

∴h(1)≤0,解得:﹣ ≤a≤

②2a﹣1>0即a> 时,y=(a﹣ )x2﹣2ax的图象开口向上,

存在x0>1,使得(a﹣ ﹣2ax0>0,

从而h(x0)>0,h(x)<0在(1,+∞)不恒成立,

令m(x)=f(x)﹣(1﹣a2)lnx= x2﹣2ax+a2lnx,

则m′(x)= ≥0,m(x)在(1,+∞)递增,

由f(x)﹣(1﹣a2)lnx>0恒成立,得:m(1)≥0,解得:a≤

综上,a∈[﹣ ]时,f(x)是函数f1(x)、f2(x)在区间(1,+∞)上的一个“分界函数”.


【解析】(1)求出函数的导数,根据f(x)有且只有一个极值点,得到x2﹣2ax+1<0恒成立,求出a的范围即可;(2)根据“分界函数”的定义,只需x∈(1,+∞)时,f(x)﹣(1﹣a)x2<0恒成立且f(x)﹣(1﹣a2)lnx>0恒成立,判断函数的单调性,求出a的范围即可.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的极值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500/件的新产品,规定试销时销售单价不低于成本单价,又不高于800/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).

1)由图象,求函数的表达式;

2)设公司获得的毛利润(毛利润=销售总价﹣成本总价)为元.试用销售单价表示毛利润,并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC-A1B1C1的所有棱长都为2,DCC1中点.

(1)求证:AB1⊥平面A1BD;

(2)求锐二面角A-A1D-B的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数f(x)满足f(x+2)f(x)=1对于x∈R恒成立,且f(x)>0,则f(2015)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcos(x+ )+
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在区间[0, ]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1,则数列{bn}的前1000项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a0a≠1).

1)判断并证明函数fx)的奇偶性;

2)若ft2t1+ft2)<0,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面积.

查看答案和解析>>

同步练习册答案