精英家教网 > 高中数学 > 题目详情
(2012•温州一模)已知函数f(x)满足f(x)=2f(
1
x
)
,当x∈[1,3]时,f(x)=lnx,若在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )
分析:可以根据函数f(x)满足f(x)=2f(
1
x
)
,求出x在[
1
3
,1]上的解析式,已知在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,对g(x)进行求导,利用导数研究其单调性,从而求出a的范围;
解答:解:在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,
①a>0若x∈[1,3]时,f(x)=lnx,可得g(x)=lnx-ax,(x>0)
g′(x)=
1
x
-a=
1-ax
x

若g′(x)<0,可得x>
1
a
,g(x)为减函数,
若g′(x)>0,可得x<
1
a
,g(x)为增函数,
此时f(x)必须在[1,3]上有两个交点,
g(
1
a
)>0
g(3)≤0
g(1)≤0
,解得,
ln3
3
≤a<
1
e

1
3
<x<1,可得1<
1
x
<3,
f(x)=2f(
1
x
)
=2ln
1
x
,此时g(x)=-2lnx-ax,
g′(x)=-
2+ax
x

若g′(x)>0,可得x<-
1
a
<0,g(x)为增函数
若g′(x)<0,可得x>-
1
a
,g(x)为减函数,
在[
1
3
,1]上有一个交点,则
g(-
2
a
)>0
g(
1
3
)≥0
g(1)≤0
,解得0<a≤6ln3②
综上①②可得
ln3
3
≤a<
1
e

②若a<0,对于x∈[1,3]时,g(x)=lnx-ax>0,没有零点,不满足在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,
综上:
ln3
3
≤a<
1
e

故选A;
点评:此题充分利用了分类讨论的思想,是一道综合题,难度比较大,需要排除a<0时的情况,注意解方程的计算量比较大,注意学会如何分类讨论;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在矩形ABCD中,AB=8,BC=4,E,F,G,H分别为四边的中点,且都在坐标轴上,设
OP
OF
CQ
CF
(λ≠0).
(Ⅰ)求直线EP与GQ的交点M的轨迹Γ的方程;
(Ⅱ)过圆x2+y2=r2(0<r<2)上一点N作圆的切线与轨迹Γ交于S,T两点,若
NS
NT
+r2=0
,试求出r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)设E为AB的中点,已知△ABC的面积为15,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为
23
,则该学生在面试时得分的期望值为
15
15
分.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)若圆x2+y2-4x+2my+m+6=0与y轴的两个交点A,B位于原点的同侧,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案