精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项的和为,且.

1)证明数列为等比数列,并求出数列的通项公式;

2)设,求数列的前项的和

3)设函数为常数),且(2)中的对任意的都成立,求实数的取值范围.

【答案】1)证明见解析,);(2;(3

【解析】

1)由,可得时,.变形为:,即可证明数列是等比数列,可得.再利用:时,,即可得出;

2)由(Ⅰ)知,裂项相消法可得

3)由对所有的都成立,可得:,利用数列的单调性与二次函数的单调性即可得出.

1)证:∵

,∴

∴数列是首项为2,公比的等比数列,

,即

时,

时,,满足上式,

故数列的通项公式);

2)解:∵

=

3)解:显然,故由题知对任意的,都有

对任意的恒成立,

,即,∴

故实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若存在正数xy,使得,其中e为自然对数的底数,则实数的取值范围是_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:

温度

20

25

30

35

产卵数/个

5

20

100

325

(1)根据散点图判断哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);

(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)

参考数据:

5

20

100

325

1.61

3

4.61

5.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两条渐近线分别为直线,经过右焦点且垂直于的直线分别交两点,若成等差数列,且,则该双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:

阶梯级别

第一阶梯水量

第二阶梯水量

第三阶梯水量

月用水量范围(单位:立方米)

从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:

(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;

(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是正方形,ACBD交于点OPC⊥底面ABCD, 点E为侧棱PB的中点.

求证:(1) PD∥平面ACE

(2) 平面PAC⊥平面PBD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上一点与两焦点构成的三角形的周长为,离心率为 .

(1)求椭圆的方程;

(2)设椭圆C的右顶点和上顶点分别为AB,斜率为的直线l与椭圆C交于PQ两点(点P在第一象限).若四边形APBQ面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为3.5万元,每件珠宝售价(万元)与加工时间(单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间(天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.

1)如果每件珠宝加工天数分别为612,预计销量分别会有多少件?

2)设工厂生产这批珠宝产生的纯利润为(万元),请写出纯利润(万元)关于加工时间(天)之间的函数关系式,并求纯利润(万元)最大时的预计销量.

注:毛利润=总销售额-原材料成本,纯利润=毛利润-工人报酬

查看答案和解析>>

同步练习册答案