精英家教网 > 高中数学 > 题目详情

【题目】已知为此函数的定义域)同时满足下列两个条件:函数内单调递增或单调递减;如果存在区间,使函数在区间上的值域为,那么称为闭函数;

请解答以下问题:

(1) 求闭函数符合条件的区间

(2) 判断函数是否为闭函数?并说明理由;

(3)是闭函数,求实数的取值范围;

【答案】1)2) 函数在定义域上不是单调递增或单调递减函数,从而该函数不是闭函数3)

【解析】

解:(1) 先证符合条件:对于任意,且,有

,故上的减函数.由题可得:,又所求区间为

(2) 上单调递减,在上单调递增;(证明略)所以,函数在定义域上不是单调递增或单调递减函数,从而该函数不是闭函数

3)易知上的增函数,符合条件;设函数符合条件的区间为,则;故的两个不等根,即方程组为:

有两个不等非负实根;

为方程的二根,

解得:的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,总存在实数,使成立,则称关于参数的不动点.

1)当时,求关于参数的不动点;

2)若对任意实数,函数恒有关于参数两个不动点,求的取值范围;

3)当时,函数上存在两个关于参数的不动点,试求参数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员每次击中目标的概率都是,现采用随机模拟的方法估计该运动员射击次至多击中次的概率:先由计算器产生之间取整数值的随机数,指定表示没有击中目标,表示击中目标,因为射击次,故以每个随机数为一组,代表射击次的结果.经随机模拟产生了如下组随机数:

5727 0293 7140 9857 0347 4373 8636 9647 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 6710 4281

据此估计,射击运动员射击4次至多击中3次的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《朗读者》是一档文化情感类节目,以个人成长、情感体验、背景故事与传世佳作相结合的方式,选用精美的文字,用最平实的情感读出文字背后的价值,深受人们的喜爱.为了了解人们对该节目的喜爱程度,某调查机构随机调查了两个城市各100名观众,得到下面的列联表.

非常喜爱

喜爱

合计

城市

60

100

城市

30

合计

200

完成上表,并根据以上数据,判断是否有的把握认为观众的喜爱程度与所处的城市有关?

附参考公式和数据:(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(2)若 上的最小值为-2,求m的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,点分别为棱的中点.

1)求证:平面

2)求二面角的大小;

3)在线段上是否存在一点,使得直线与平面所成的角为?如果存在,求出线段的长;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Wab0)的离心率,其右顶点A20),直线l过点B10)且与椭圆交于CD两点.

)求椭圆W的标准方程;

)判断点A与以CD为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意实数都满足,且,当时,.

(1)判断函数的奇偶性;

(2)判断函数上的单调性,并给出证明;

(3)若,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划在甲、乙两个互联网创新项目上共投资1200万元,每个项目至少要投资300万元.根据市场分析预测:甲项目的收益与投入满足,乙项目的收益与投入满足.设甲项目的投入为.

1)求两个项目的总收益关于的函数.

2)如何安排甲、乙两个项目的投资,才能使总收益最大?最大总收益为多少?(注:收益与投入的单位都为“万元”)

查看答案和解析>>

同步练习册答案