精英家教网 > 高中数学 > 题目详情
已知θ∈(
π
2
,π),
1
sinθ
+
1
cosθ
=2
2
,则sin(2θ-
π
3
)=
 
考点:二倍角的正弦
专题:计算题,三角函数的求值
分析:
1
sinθ
+
1
cosθ
=2
2
进行通分、两边同乘sinθcosθ,然后两边平方,利用同角三角函数基本关系式及倍角公式可求出sin2θ、cos2θ,注意根据角的范围确定三角函数值的符号,代入两角差的正弦公式求sin(2θ-
π
3
)值.
解答: 解:∵
1
sinθ
+
1
cosθ
=
sinθ+cosθ
sinθcosθ
=2
2

∴sinθ+cosθ=2
2
sinθcosθ=
2
sin2θ

两边平方得:1+sin2θ=2sin2
解得:sin2θ=-
1
2
或sin2θ=1
∵θ∈(
π
2
,π),∴2θ∈(π,2π)
∴sin2θ=-
1
2
,∴sinθ+cosθ=-
2
2

∴cos2θ=
3
2

∴sin(2θ-
π
3
)=sin2θcos
π
3
-cos2θsin
π
3
=-
1
2
×
1
2
-
3
2
×
3
2
=-1
故答案为-1.
点评:本题考查了三角函数式的化简及求值问题,在求解过程中注意公式的选择,在利用平方关系式时要特别注意要确定三角函数值的符号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(3,1),
b
=(1,3),
c
=(5,k),若(
a
-
c
)∥
b
,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=ln(x2+ax-a+1),有以下五个结论:
①f(x)既不是奇函数也不是偶函数;
②f(x)有最小值;
③当a=0时,f(x)的定义域为R;
④当a=1时,f(x)的值域为R;
⑤若f(x)在[2,+∞)上单调递增,则实数a的取值范围是a≥-4.
其中正确的是
 
(把你认为正确结论的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,cos 2
A
2
=
b+c
2c
,则△ABC的形状是(  )
A、直角三角形
B、等腰直角三角形或直角三角形
C、正三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|1-x|+
x
的定义域为(  )
A、{x|x≤1}
B、{x|x≥o}
C、{x|x≥1或x≤0}
D、{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(ωx+φ),2),
b
=(1,cos(ωx+φ))(ω>0,0<φ<
π
4
).函数f(x)=(
a
+
b
)•(
a
-
b
),y=f(x)的图象的相邻两对称轴之间的距离为2,且过点M(1,
7
2
).
(1)求f(x)的表达式;
(2)求f(0)+f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2+ax)ex在(-1,1)上是减函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

空间直线a、b、c,则下列命题中真命题的是(  )
A、若a⊥b,c⊥b,则a∥c
B、若a与b是异面直线,b与c是异面直线,则a与c也是异面直线
C、若a∥c,c⊥b,则a⊥b
D、若a∥b,b与c是异面直线,则a与c也是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

在函数f(x)=1gx的图象上有三点A、B、C,横坐标依次是m-1,m,m+1(m>2).
(1)试比较f(m-1)+f(m+1)与2f(m)的大小;
(2)解不等式f(x)>f(x2+x-2)
(3)求△ABC的面积S=g(m)的值域.

查看答案和解析>>

同步练习册答案