精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.

a=2,或a=-1

解析试题分析:因为函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,通过配方可知函数的对称轴为x=a,且知该二次函数的开口向下,按分类讨论,结合图象就可用a将函数在[0,1]的最大值表示出来,再令其等于2就可解得a值.
试题解析:由f(x)=-x2+2ax+1-a=知其对称轴为:,又因为x∈[0,1];
(1)当时,函数在[0,1]上是减函数,所以
(2)当时,函数在[0,1]上是增函数,所以
(3)当时,函数在[0,1]上的最大值为故舍去.
综上可知:a=2,或a=-1
考点:1.二次函数在闭区间上的最值;2.分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某市环保部门对市中心每天环境污染情况进行调查研究,发现一天中环境污染指数与时刻(时)的关系为,其中是与气象有关的参数,且,用每天的最大值作为当天的污染指数,记作.
(1)令,求的取值范围;
(2)按规定,每天的污染指数不得超过2,问目前市中心的污染指数是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (x∈R,且x≠2).
(1)求的单调区间;
(2)若函数与函数在x∈[0,1]上有相同的值域,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果n件产品中任取一件样品是次品的概率为,则认为这批产品中有件次品。某企业的统计资料显示,产品中发生次品的概率p与日产量n满足,有已知每生产一件正品可赢利a元,如果生产一件次品,非但不能赢利,还将损失元().
(1)求该企业日赢利额的最大值;
(2)为保证每天的赢利额不少于日赢利额最大值的50%,试求该企业日产量的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求证:二次函数的图象与轴交于的充要条件为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,上是被切去的等腰直角三角形斜边的两个端点,设
(1)若广告商要求包装盒侧面积最大,试问应取何值?
(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率).
(1)将表示成的函数,并求该函数的定义域;
(2)讨论函数的单调性,并确定为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•湖北)(1)已知函数f(x)=lnx﹣x+1,x∈(0,+∞),求函数f(x)的最大值;
(2)设a1,b1(k=1,2…,n)均为正数,证明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,则≤1;
②若b1+b2+…bn=1,则≤b12+b22+…+bn2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数 若, 则a的取值范围是        .

查看答案和解析>>

同步练习册答案