精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PDDCFPB的中点.求证:

(1)DFAP.

(2)在线段AD上是否存在点G,使GF⊥平面PBC?若存在,说明G点的位置,并证明你的结论;若不存在,说明理由.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:

(1)AB的中点E,连结EF,则PA∥EF.由题意可得DE2EF2DF2,从而DFEF,结合EF∥PA,可证得DFPA.(2)猜想当G点是AD的中点,满足GF⊥平面PBC。连PGBG,可得GFPB,又由条件可得GFBC,从而可证得GF⊥平面PBC,从而得到假设成立。

试题解析:

(1)取AB的中点E,连结EF,则PA∥EF.

PDDCa

易求得DEaFEPAaDFPBa.

由于DE2EF2DF2

DFEF

EF∥PA

DFPA.

(2)在线段AD上存在点G,使GF⊥平面PBC,且G点是AD的中点.

AD的中点G,连接PGBG,则PGBG.

FPB的中点,故GFPB.

FPB中点,

F点在底面ABCD上的射影为正方形ABCD的中心O

GOGF在平面ABCD上的射影,

GOBC

GFBC

BCPB=B,

GF⊥平面PBC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的S的值为64,则判断框内可填入的条件是(
A.k≤3?
B.k<3?
C.k≤4?
D.k>4?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB=BC,D为线段AC的中点.

(1)求证:PA⊥BD.

(2)求证:BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三人独立破译同一份密码.已知三人各自破译出密码的概率分别为 ,且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前55个圈中的●的个数是(
A.10
B.9
C.8
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型: 其中x表示经过的时间, 表示x=0时的人口,r表示人口的平均增长率.

下表是1950―1959年我国人口数据资料:

如果以各年人口增长率的平均值作为我国这一时期的人口增长率,用马尔萨斯人口增长模型建立我国这一时期的具体人口增长模型,某同学利用图形计算器进行了如下探究:

由此可得到我国1950―1959年我国这一时期的具体人口增长模型为____________. (精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x2﹣9x+2.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在区间[﹣1,m](m>﹣1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.

(1)求证:平面EAC平面PBC

(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+b(a,b∈R)在区间(0,1]上有零点x0 , 则 的最大值是

查看答案和解析>>

同步练习册答案