精英家教网 > 高中数学 > 题目详情
1.如图所示,已知空间四边形OABC各边及对角线长都相等,E,F分别为AB,OC的中点,求0E与BF所成角的余弦值.

分析 连结CE,取CE中点G,连结FG、BG,则FG∥OE,∠BFG是0E与BF所成角,由此利用余弦定理能求出0E与BF所成角的余弦值.

解答 解:连结CE,取CE中点G,连结FG、BG,
∵空间四边形OABC各边及对角线长都相等,E,F分别为AB,OC的中点,
∴FG∥OE,∴∠BFG是0E与BF所成角,
设AB=2,则OE=CE=BF=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
GF=EG=$\frac{1}{2}OE=\frac{\sqrt{3}}{2}$,
BG=$\sqrt{G{E}^{2}+B{E}^{2}}$=$\sqrt{(\frac{\sqrt{3}}{2})^{2}+{1}^{2}}$=$\frac{\sqrt{7}}{2}$,
∴cos∠BFG=$\frac{B{F}^{2}+F{G}^{2}-B{G}^{2}}{2×BF×FG}$=$\frac{3+\frac{3}{4}-\frac{7}{4}}{2×\sqrt{3}×\frac{\sqrt{3}}{2}}$=$\frac{2}{3}$.
∴0E与BF所成角的余弦值为$\frac{2}{3}$.

点评 本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知:集合A={x|3<x≤6),B={x|m≤x≤2m+l}
(1)若m=2,求A∩B,A∪B;
(2)若A⊆B,求实数m的取值范围;
(3)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知0<k<4,直线l1:kx-2y-2k+8=0和直线${l_2}:2x+{k^2}y-4{k^2}-4=0$与两坐标轴围成一个四边形,求使这个四边形面积取最小时的k的值及最小面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x的方程mx2+2x+1=0至少有一个负根,则实数m的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?k∈R,使直线y=kx+1与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)无公共点”为假命题,则实数b的取值范围是b≥1且b≠2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.平行线2x-7y+8=0和2x-7y-6=0的距离为$\frac{14\sqrt{51}}{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{{\begin{array}{l}{f(x+2)+1,x<3}\\{{3^x},x≥3}\end{array}}\right.$,则f(log34)=(  )
A.4B.28C.37D.81

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知全集U={n|1≤n≤2015,n∈N*},集合A、B都是U的子集,且A∪B=U,A∩B≠∅,若A∩∁UB={1,2},则满足条件的集合B∩∁UA的个数是22013-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(π+α)=$\frac{3}{5}$,则cos(α-2π)=$±\frac{4}{5}$.

查看答案和解析>>

同步练习册答案