【题目】已知抛物线,为抛物线上的点,若直线经过点且斜率为,则称直线为点的“特征直线”.设、为方程()的两个实根,记.
(1)求点的“特征直线”的方程;
(2)已知点在抛物线上,点的“特征直线”与双曲线经过二、四象限的渐进线垂直,且与轴的交于点,点为线段上的点.求证:;
(3)已知、是抛物线上异于原点的两个不同的点,点、的“特征直线”分别为、,直线、相交于点,且与轴分别交于点、.求证:点在线段上的充要条件为(其中为点的横坐标).
【答案】(1)(2)证明见解析(3)证明见解析
【解析】
(1)计算的斜率为1,再计算直线方程得到答案.
(2)根据与渐近线垂直得到,线段的方程为,得到,代入方程得到,,计算得到.
(3))设,,得到所对应的方程为:计算得到,分别证明充分性和必要性得到答案.
(1)由题意的斜率为1,所以点的“特征直线”的方程为.
(2)设点,由于双曲线所求渐进线的斜率为
所以,进而得,线段的方程为
所以满足
所对应方程为:,解得,
因为,所以,进而
(3)设,,
则、的方程分别为,,
解、交点可得,,
所对应的方程为:,
必要性:因为点在线段上
当时,,得,
当时,,得,
所以,进而
①充分性:由,得,
当时,,得,
当时,得,得,
所以点在线段上.
综上所述:点在线段上的充要条件为
科目:高中数学 来源: 题型:
【题目】已知曲线,直线经过点与相交于、两点.
(1)若且,求证: 必为的焦点;
(2)设,若点在上,且的最大值为,求的值;
(3)设为坐标原点,若,直线的一个法向量为,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,,则下面结论正确的是( )
A.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
D.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:在四棱锥中, 平面,底面是正方形, .
(1)求异面直线与所成角的大小(结果用反三角函数值表示);
(2)求点、分别是棱和的中点,求证: 平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种游戏中,黑、黄两个“电子狗”从棱长为1的正方体ABCD-A1B1C1D1的顶点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.黑“电子狗”爬行的路线是AA1→A1D1→ ,黄“电子狗”爬行的路线是AB→BB1→ ,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是正整数).设黑“电子狗”爬完2015段、黄“电子狗”爬完2014段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”. 已知数列1,2. 第一次“H扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2; 那么第10次“H扩展”后得到的数列的所有项的和为( )
A.88572B.88575C.29523D.29526
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:()的右焦点为,短轴的一个端点到的距离等于焦距.
(1)求椭圆的标准方程;
(2)设、是四条直线,所围成的矩形在第一、第二象限的两个顶点,是椭圆上任意一点,若,求证:为定值;
(3)过点的直线与椭圆交于不同的两点、,且满足△与△的面积的比值为,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com