【题目】已知 =(sinx,sin(x﹣ )), =(sinx,cos(x+ )),f(x)= .
(1)求f(x)的解析式及周期;
(2)求f(x)在x∈[﹣ , ]上的值域.
【答案】
(1)解:f(x)=sin2x+sin(x﹣ )cos(x+ )=sin2x﹣sin2(x- )
= ﹣ = [cos(2x﹣ )﹣cos2x]
= ( sin2x﹣ cos2x)= sin(2x﹣ ).
∴f(x)的周期T= =π
(2)解:∵x∈[﹣ , ],∴2x﹣ ∈[﹣ , ],
∴当2x﹣ =﹣ 时,f(x)取得最小值 =﹣ .
当2x﹣ = 时,f(x)取得最大值 =
∴f(x)在x∈[﹣ , ]上的值域是[﹣ , ]
【解析】(1)利用向量的数量积公式得出f(x),利用二倍角公式,诱导公式及两角和差的三角函数化简;(2)根据x的范围得出2x﹣ 的范围,根据正弦函数的单调性得出f(x)的最值.
科目:高中数学 来源: 题型:
【题目】如图在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知AD=PD,PA=6,BC=8,DF=5,求证:
(1)直线PA∥平面DEF;
(2)平面DEF⊥平面ABC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在海岛上有一座海拔的山峰,山顶设有一个观察站,有一艘轮船按一固定方向做匀速直线航行,上午时,测得此船在岛北偏东、俯角为的处,到时,又测得该船在岛北偏西、俯角为的处.
(1)求船的航行速度;
(2)求船从到行驶过程中与观察站的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= sin ,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2 , 则m的取值范围是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, , 为实数, , 为自然对数的底数, .
(1)当, 时,设函数的最小值为,求的最大值;
(2)若关于的方程在区间上有两个不同实数解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学初一年级500名学生参加某次数学测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:
(1)从总体的500名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)判断函数f(x)的奇偶性;
(2)判断并证明f(x)的单调性;
(3)求关于x的不等式f(2x﹣1)+f(x+3)>0的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com