【题目】设 = , =(4sinx,cosx﹣sinx),f(x)= .
(1)求函数f(x)的解析式;
(2)已知常数ω>0,若y=f(ωx)在区间 是增函数,求ω的取值范围;
(3)设集合A= ,B={x||f(x)﹣m|<2},若AB,求实数m的取值范围.
【答案】
(1)解:f(x)=sin2 4sinx+(cosx+sinx)(cosx﹣sinx)
=4sinx +cos2x
=2sinx(1+sinx)+1﹣2sin2x=2sinx+1,
∴f(x)=2sinx+1.
(2)解:∵f(ωx)=2sinωx+1,ω>0.
由2kπ﹣ ≤ωx≤2kπ+ ,
得f(ωx)的增区间是 ,k∈Z.
∵f(ωx)在 上是增函数,
∴ .
∴﹣ ≥﹣ 且 ≤ ,
∴ .
(3)解:由|f(x)﹣m|<2,得﹣2<f(x)﹣m<2,即f(x)﹣2<m<f(x)+2.
∵AB,∴当 ≤x≤ 时,
不等式f(x)﹣2<m<f(x)+2恒成立,
∴f(x)max﹣2<m<f(x)min+2,
∵f(x)max=f( )=3,f(x)min=f( )=2,
∴m∈(1,4).
【解析】(1)通过数量积的计算,利用二倍角公式化简函数的表达式,化为一个角的一个三角函数的形式,即可.(2)结合正弦函数的单调增区间,y=f(ωx)在区间 是增函数,说明 .求出ω的取值范围;(3)简化集合B,利用AB,得到恒成立的关系式,求出实数m的取值范围.
【考点精析】解答此题的关键在于理解正弦函数的单调性的相关知识,掌握正弦函数的单调性:在上是增函数;在上是减函数.
科目:高中数学 来源: 题型:
【题目】如图2,四边形为矩形, ⊥平面, ,作如图3折叠,折痕 ,其中点分别在线段上,沿折叠后点叠在线段上的点记为,并且⊥.(1)证明: ⊥平面;
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)在区间上[0,1]的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算出曲线y=f(x)及直线x=0,x﹣1=0,y=0所围成部分的面积S,先产生两组(每组N个)区间[0,1]上的均匀随机数X1 , X2 , X3 , XN和y1 , y2 , y3 , yN , 由此得到N个点(xi , yi)(i=1,2,3N,再数出其中满足yi≤f(xi)(i=1,2,3,N)的点数N1 , 那么由随机方法可以得到S的近似值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学举行了一次“环保只知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为 分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.
(1)求出的值;
(2)在选取的样本中,从竞赛成绩是 分以上(含 分)的同学中随机抽取 名同学到广场参加环保只是的志愿宣传活动.
1)求所抽取的 名同学中至少有 名同学来自第 组的概率;
2)求所抽取的 名同学来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)、g(x)分别是定义在R上的奇函数和偶函数,令h(x)=f(x)g(x),且对任意x1 , x2∈(0,+∞),都有 <0,g(1)=0,则不等式xh(x)<0的解集为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com