精英家教网 > 高中数学 > 题目详情
18.已知动圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相外切,则动圆圆心M的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>0)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<0)C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1D.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1

分析 动圆圆心为M,半径为r,已知圆圆心为C,半径为4 由题意知:MB=r,MC=r+4,所以MC-MA=4 即动点M到两定点的距离之差为常数4,M在以A、C为焦点的双曲线左支上,且2a=4,2c=8,从而可得动圆圆心M的轨迹方程

解答 解:动圆圆心为M,半径为r,已知圆圆心为C,半径为4 由题意知:MB=r,MC=r+4,
所以MC-MB=4
即动点M到两定点的距离之差为常数4,M在以B、C为焦点的双曲线左支上,且2a=4,2c=8
∴b=$\sqrt{{c}^{2}-{a}^{2}}$=2$\sqrt{3}$,
∴动圆圆心M的轨迹方程为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≤-2).
故选:B.

点评 本题考查圆与圆的位置关系,考查双曲线的定义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在(1+x+x2n=D${\;}_{n}^{0}$+D${\;}_{n}^{1}$x+D${\;}_{n}^{2}$x2+…+D${\;}_{n}^{r}$xr+…+D${\;}_{n}^{2n-1}$x2n-1+D${\;}_{n}^{2n}$x2n的展开式中,把D${\;}_{n}^{0}$,D${\;}_{n}^{1}$,D${\;}_{n}^{2}$,…,D${\;}_{n}^{2n}$叫做三项式系数.
(1)当n=2时,写出三项式系数D${\;}_{2}^{0}$,D${\;}_{2}^{1}$,D${\;}_{2}^{2}$,D${\;}_{2}^{3}$,D${\;}_{2}^{4}$的值;
(2)类比二项式系数性质C${\;}_{n+1}^{m}$=C${\;}_{n}^{m-1}$+C${\;}_{n}^{m}$(1≤m≤n,m∈N,n∈N),给出一个关于三项式系数D${\;}_{n+1}^{m+1}$(1≤m≤2n-1,m∈N,n∈N)的相似性质,并予以证明;
(3)求D${\;}_{2015}^{0}$C${\;}_{2015}^{0}$-D${\;}_{2015}^{1}$C${\;}_{2015}^{1}$+D${\;}_{2015}^{2}$C${\;}_{2015}^{2}$-…+(-1)kD${\;}_{2015}^{k}$C${\;}_{2015}^{k}$+…+D${\;}_{2015}^{2014}$C${\;}_{2015}^{2014}$-D${\;}_{2015}^{2015}$C${\;}_{2015}^{2015}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=cosx•\sqrt{\frac{1+sinx}{1-sinx}}+sinx•\sqrt{\frac{1+cosx}{1-cosx}}$
(1)当$x∈(0,\frac{π}{2})$时,化简f(x)的解析式并求f(x)的对称轴和对称中心;
(2)当$x∈(π,\frac{3π}{2})$时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
 ①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
 ③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
当f(x)=ex时,上述结论中正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲、乙、丙、丁、戊五位同学.看五本不同的书A,B,C,D,E,每人至少要读一本书,但不能重复读同一本书,甲、乙、丙、丁分别读了2,2,3,5本书,A,B,C,D分别被读了1,1,2,4次,那么,戊读了1本书,E被读了5次.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将一个各个面上均涂有颜色的正方体锯成n3(n≥3)个同样大小的小正方体,从这些小正方体中任取1个,则其中三面都涂有颜色的概率为(  )
A.$\frac{1}{n^3}$B.$\frac{4}{n^3}$C.$\frac{8}{n^3}$D.$\frac{1}{n^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tan($\frac{π}{4}+a$)=3+$2\sqrt{2}$.
(Ⅰ)求tana的值;
(Ⅱ)求cos2(π-a)+sin($\frac{3π}{2}+a$)cos($\frac{π}{2}$+a)+2sin2(a-π)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知F1,F2分别为双曲线的左、右焦点,P为双曲线右支上的任意一点,若$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为8a,则双曲线的离心率e的取值范围是(  )
A.(1,+∞)B.(1,2]C.(1,$\sqrt{3}$]D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.不通过求值,比较下列各组中两个三角函数值的大小:
(1)sin103°15′与sin164°30′;
(2)sin(-$\frac{54}{7}$π)与sin(-$\frac{63}{8}$π)

查看答案和解析>>

同步练习册答案