精英家教网 > 高中数学 > 题目详情

已知双曲线的离心率且点在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.

(Ⅰ) .(Ⅱ) .

解析试题分析:(Ⅰ)由已知可知双曲线为等轴双曲线设a=b        1分
及点在双曲线上解得                                 4分
所以双曲线的方程为.                       5分
(Ⅱ)由题意直线的斜率存在,故设直线的方程为
 得                 8分
设直线与双曲线交于,则是上方程的两不等实根,
     ①
这时              
   
                11分
所以     即

      适合①式         13分
所以,直线的方程为.          14分
另解:求出及原点到直线的距离,利用求解.
或求出直线轴的交点,利用
求解
考点:本题考查了双曲线方程及直线与双曲线的位置关系
点评:涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,还应注意运用弦长公式的前提条件

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知过抛物线的焦点,斜率为的直线交抛物线于)两点,且
(1)求该抛物线的方程;
(2)为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F1,F2是离心率为的椭圆
C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l经过点(0,-2),其倾斜角是60°.
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线与椭圆有相同的焦点,且该双曲线
的渐近线方程为
(1)求双曲线的标准方程;
(2) 过该双曲线的右焦点作斜率不为零的直线与此双曲线的左,右两支分别交于点
,当轴上的点满足时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)判断曲线的切线能否与曲线相切?并说明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点,最小值为8.
(1)求该抛物线的方程;
(2)若直线与抛物线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。

查看答案和解析>>

同步练习册答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�